Synthesis, design and use of new BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites for degradation of dye pollutant

Document Type : Original Article


Shahroud, Shahroud University of Technology, Faculty of Chemistry


One important topic to recovery the photocatalytic process is to prevent the recombination of electrons and holes generated by light excitation of the photocatalyst. Different strategies have been used such as a composite of compounds is an appropriative way to reduce the recombination. On the other hand, to optimize the use of visible light , components can composite with visible active components. In this article, to more using solar light and more activation of composite in visible light, sensitization with porphyrin and tin porphyrin complex was carried out. As a result, we reported on the synthesis of BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites.
The nanocomposites were characterized by the XRD, FT-IR, FE-SEM equipped with EDS, Raman, and UV–vis DRS analytical techniques. Furthermore, the photocatalytic activity of nanocomposites sensitized with porphyrin for photodegradation of methyl orange (MO) as model organic pollutant were investigated. The maximum degradation efficiency of 95% is achieved under visible light irradiation in 240 min. The photocatalytic performance of BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites is much higher than that of BiOBr/Ag.


[1] C.E. Diaz-Uribe, W.A. Vallejo and J. Miranda, J. Photochem. Photobiol. A 294 (2014) 75.
[2] C. Diaz-Uribe, W. Vallejo and W. Ramos, Appl. Surf. Sci. 319 (2014) 121.
[3] R. Rahimi, M. Yaghoubi-Berijani, S. Zargari, M. Rabbani and S. Shariatinia, Res. Chem. Intermed. 42 (2016) 4697.
[4] Q. Wang, J. Hui, J. Li, Y. Cai, S. Yin, F. Wang and B. Su, Appl. Surf. Sci. 283 (2013) 577.
[5] R. Mohammadzadeh kakhki, F. Entezari and A. Niknahad, J. of Applied Chemistry. in Persian. 15(54) (2020) 113.
[6] X. Meng and Z. Zhang, J. Mol. Catal. Chem. 423 (2016) 533.
[7] K. Wenderich and G. Mul, Chem. Rev. 116 (2016) 14587.
[8] X. Meng, Z. Li, J. Chen, H. Xie and Z. Zhang, Appl. Surf. Sci. 433 (2018) 76.
[9] Y. Wu, F. Xu, D. Guo, Z. Gao, D. Wu and K. Jiang, Appl. Surf. Sci. 274 (2013) 39.
[10] Y. Guo, J. Zhang, D. Zhou and S. Dong, J. Mol. Liq. 262 (2018)194.
[11] A. Haghighi Asl, A. Ahmadpour and N. Fallah, J. of Applied Chemistry. in Persian. 12(42) (2017) 253.
[12] H. Cui, Y. Zhou, J. Mei, Z. Li, S. Xu and C. Yao, J. Phys. Chem. Solids. 112 (2018) 80.
[13] S. L. Wang, L. L. Wang, W. H. Ma, D. M. Johnson, Y. F. Fang, M. K. Jia and Y. P. Huang, Chem. Eng. J. 259 (2015) 410.
[14] Y. I. Choi, K. H. Jeon, H. S. Kim, J. H. Lee, S. J. Park, J. E. Roh,  M. M. Khan and Y. Sohn, Sep. Purif. Technol. 160 (2016) 28.
[15] P. Yan, L. Xu, D. Jiang, H. Li, J. Xia, Q. Zhang, M. Hua and H. Li, Electrochim. Acta. 259 (2018) 873.
 [16] L. Ye, Y. Su, X. Jin, H. Xie and C. Zhang, Environ. Sci.: Nano. 1(2) (2014) 90.
[17] C. Xu, H. Wu and F. L. Gu, J. Hazard. Mater. 275 (2014) 185.
 [18] H. Zhang, L. Liu and Z. Zhou, Phys. Chem. Chem. Phys. 14(3) (2012) 1286.
[19] H. Patnam, L. K. Bharat, S. K. Hussain and J. S. Yu, J. Alloys Compd. 763 (2018) 478.
[20] S. Song, W. Gao, X. Wang, X. Li, D. Liu, Y. Xing and H. Zhang, Dalton Trans. 41(34) (2012)10472.
[21] S. Qu, Y. Xiong and J. Zhang, J. Colloid Interface Sci. 527 (2018) ‎78.
[22] Q. L. Yuan, Y. Zhang, H. Y. Yin, Q. L. Nie and W. W. Wu, J. Exp. Nanosci. 11(5) (2016) 359.
[23] J. C. Cano-Franco,and M. Álvarez-Láinez, Mater. Sci. Semicond. Process. 90 (2019) 190.
[24] S. Paudel, P. R. Adhikari, O. P. Upadhyay, G. C. Kaphle and A. Srivastava, J. Inst. Sci. Technol. 22(2) (2018) 63.
[25] S. Garg, M. Yadav, A. Chandra, S. Sapra, S. Gahlawat, P. Ingole, M. Todea, E. Bardos, Z. Pap and K. Hernadi, Materials. 11(8) (2018) 1273.
[26] J. Liu, Y.Z. Fan, X. Li, Z. Wei, Y.W. Xu, L. Zhang and C.Y. Su, Appl. Catal. B 231 (2018) 173.
[27] S. Mei, J. Gao, Y. Zhang, J. Yang, Y. Wu, X. Wang, R. Zhao, X. Zhai, C. Hao, R. Li and J. Yan, J. colloid interface sci. 506 (2017) 58.
[28] R. Rahimi, S. Shariatinia, S. Zargari, M. Yaghoubi-berijani, A. Ghaffarinejad and Z.S. Shojaie, RSC Adv. 5(58) (2015) 46624.
 [29] R.X. Wang, J.J. Fan, Y.J. Fan, J.P. Zhong, L. Wang, S.G. Sun and X.C. Shen, Nanoscale. 6(24) (2014)14999.
[30] M. Yao, Y. Meng, X. Mao, X. Ning, Z. Zhang, D. Shan, J. Chen and X. Lu, Electrochim. Acta. 282 (2018) 575.
[31] R. Saraf, C. Shivakumara, S. Behera, N. Dhananjaya and H. Nagabhushana, RSC Adv. 5(12) (2015) 9241
[32] A., Esmaeili and M. H. Entezari, RSC Adv. 5 (2015) 97027.
[33] M. Yaghoubi-berijani, B. Bahramian and S. Zargari, Res. Chem. Intermed. 46 (2020) 197.
[34] L. Zhang, Z. Wu, L. Chen, L. Zhang, X. Li, H. Xu, H. Wang and G. Zhu, Solid State Sci. 52 (2016) 42.
[35] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chem. Eng. J. 185 (2012) 91.
[36] S. Yao, R. Zheng, R. Li, Y. Chen, X. Zhou, J. Luo, J. Taiwan Inst. chem. Eng. 100 (2019) 186.
[37] Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, B. S. Kumari, World J. Nano Sci. Eng. 4 (2014) 21.
[38] A. B. Andrade, N. S. Ferreira, M. E. Valerio, RSC Adv. 7(43) (2017) 26839.
[39] Y. C. Yao, X. R. Dai, X. Y. Hu, S. Z. Huang and Z. Jin, Appl. Surf. Sci. 387 (2016) 469.
[40] R. Rahimi, S. Zargari, A. Ghaffarinejad and A. Morsali, Environ. Prog. Sustainable Energy. 35(3) (2016) 642.
[41] H. Cui, Y. Zhou, J. Mei, Z. Li, S. Xu and C. Yao, J. Phys. Chem. Solids. 112 (2018) 80.
[42] S. Zargari, R. Rahimi, A. Ghaffarinejad, and A. Morsali, J.Colloid Interface Sci. 466 (2016) 310.