Synthesis, characterization, and evaluation of the interaction of DNA with a new silver(I) complex with diazafluorene-based ligands: Experimental and theoretical studies

Document Type : Original Article

Authors

Department of Chemistry, Faculty of Science, Sistan and Baluchestan University, Zahedan, Iran

Abstract

In this research a novel four-coordinated silver(I) complex with N-donor chelating ligands with formula [Ag(L1)(L2)]NO3, (where 4,5-diazafluoren-9-one = L1 and N-(4,5-diazafluoren-9-ylidene)aniline = L2) has been prepared and characterized with spectroscopic methods (UV-Vis, FT-IR and 1HNMR), elemental analysis, and molar conductivity measurement. The DNA-complex binding mode has been investigated by electronic absorption titration, luminescence titration, and thermodynamic studies and the relationship between the structure and the biological properties has been discussed. The binding constants (Kb) and thermodynamic parameters (enthalpy, entropy, and Gibbs free energy changes) have been calculated. The theoretical studies of the complex structure in the DFT framework have predicted the tetrahedral N4 coordination geometry for Ag(I) center. The molecular docking has been carried out to determine the binding mode and the best orientation of the complex with DNA. The experimental and theoretical results reveal that the Ag(I) complex binds to CT-DNA with a moderate intercalation capability with the partial insertion of the planar ligands between the double-stranded DNA bases and binding constant of 1.66×105 M-1.

Keywords


[1] S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand and V. Bagchi. Dalton Trans. 41 (2012) 4955.
[2] D.E. Thurston, Chemistry and pharmacology of anticancer drugs, CRC press (2006).
[3] C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato and C. Marzano. Chem. Rev. 114 (2013) 81.
[4] N. Muhammad and Z. Guo. Curr. Opin. Chem. Biol. 19 (2014) 144.
[5] B.J. Pages, D.L. Ang, E.P. Wright and J.R. Aldrich-Wright. Dalton Trans. 44 (2015) 3505.
[6] M. Asadi, E. Safaei, B. Ranjbar and L. Hasani. New J. Chem. 28 (2004) 1227.
[7] H. Zhang, C.-S. Liu, X.-H. Bu and M. Yang. J. Inorg. Biochem. 99 (2005) 1119.
[8] R.V. Gessner, G.J. Quigley, A.H. Wang, G.A. Van der Marel, J.H. Van Boom and A. Rich. Biochemistry 24 (1985)237.
[9] K. Jennette, S. Lippard, G. Vassiliades and W. Bauer. Proc. Natl. Acad. Sci. 71 (1974) 3839.
[10] A. Wang, J. Nathans, G. Van der Marel, J. Van Boom and A. Rich. Nature 276 (1978) 471.
[11] A. C. Komor and J. K. Barton, Chem. commun. 49 (2013) 3617.
[12] S. Y. Ebrahimipour, I. Sheikhshoaie, J. Castro, M. Dušek, Z. Tohidiyan, V. Eigner and M. Khaleghi, RSC Adv. 5 (2015) 95104.
[13] A. Pyle, J. Rehmann, R. Meshoyrer, C. Kumar, N. Turro and J. K. Barton, J. Am. Chem. Soc. 111 (1989) 3051.
[14] E. Peña-Cabrera, P.-O. Norrby, M. Sjögren, A. Vitagliano, V. De Felice, J. Oslob, S. Ishii, D. O'Neill, B. Åkermark and P. Helquist. J. Am. Chem. Soc. 118 (1996) 4299.
[15] L. J. Henderson Jr, F. R. Fronczek and W. R. Cherry. J. Am. Chem. Soc. 106 (1984) 5876.
[16] Y. Wang and D. P. Rillema. Tetrahedron 53 (1997) 12377.
[17] M. Reichmann, S. Rice, C. Thomas and P. Doty. J. Am. Chem. Soc. 76 (1954) 3047.
[18] J. Marmur, J. Mol. Biol. 3 (1961) 208.
[19] M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb ,J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson. Inc., Wallingford, CT. 200 (2009) 28.
[20] A. Wolfe, G. H. Shimer Jr and T. Meehan. Biochemistry 26 (1987) 6392.
[21] M. Amiri, M. Fazli, D. Ajloo and G. Grivani, J. Of Applied Chemistry 14 (1398) 75 in Persian.
[22] Y. Wang and D. P. Rillema. Tetrahedron 53 (1997) 12377.
[23] K. Ravikumar and N. V. Lakshmi. Z. Kristallog. 209 (1994) 56.
[24] H. Cang, D. Jin, S.-Q. Wang, S. Liu and J.-T. Wang. Acta. Crystallogr. Sect. E: Struct. Rep. Online. 64 (2008) o1221.
[25] A. J. Pallenberg, T. M. Marschner and D. M. Barnhart, Polyhedron 16 (1997) 2711.
[26] A. M. Alshima'a, Y. M. Gohar, V. Langer, P. Lincoln, F. R. Svensson, J. Jänis, S. T. Gårdebjer, M. Haukka, F. Jonsson and E. Aneheim. New J. chem. 35 (2011) 640.
[27] M. McCann, B. Coyle, S. McKay, P. McCormack, K. Kavanagh, M. Devereux, V. McKee, P. Kinsella, R. O'connor and M. Clynes. Biometals 17 (2004) 635.
[28] A. A. Schilt and R. Taylor. J. Inorg. Nucl. Chem. 9 (1959) 211.
[29] S. Singh. Z. Naturforsch. A. 24 (1969) 2015.
[30] N. Shahabadi, S. Kashanian and Z. Ahmadipour. DNA Cell Biol. 30 (2011)187.
[31] C. R. Johnson, W .W. Henderson and R. E. Shepherd. Inorg. Chem. 23 (1984) 2754.
[32] W. J. Geary. Coord. Chem. Rev. 7 (1971) 81.
[33] C. J. Hensler, Ph. D. thesis, An ultraviolet absorption and fluorescence study of 1, 10-phenanthroline and related compounds in aqueous solution (1970).
[34] G. Accorsi, A. Listorti, K. Yoosaf and N. Armaroli. Chem. Soc. Rev. 3 (2009)1690.
[35] Y. Wang, W. J. Perez, G. Y. Zheng, D. P. Rillema and C. L. Huber. Inorg. chem. 37 (1998) 2227.
[36] P. Kumar, A. K. Singh, J. K. Saxena and D. S. Pandey. J. Organomet. Chem. 694 (2009) 3570.
[37] J. K. Barton, A. Danishefsky and J. Goldberg. J. Am. Chem. Soc. 106 (1984) 2172.
[38] V. T. Yilmaz, E. Gocmen, C. Icsel, M. Cengiz, S. Y. Susluer and O. Buyukgungor. J. Biol. Inorg. Chem. 19 (2014) 29.
[39] A. Tarushi, G. Psomas, C. P. Raptopoulou and D. P. Kessissoglou. Polyhedron 28 (2009) 3272.
[40] S. Mukherjee, C. Basu, S. Chowdhury, A. P. Chattopadhyay, A. Ghorai, U. Ghosh and H. Stoeckli-Evans. Inorganica Chim. Acta 363 (2010) 2752.
[41] E. Movahedi and A.R. Rezvani. 1160 (2018) 117.
[42]E. Schütz and N. von Ahsen. Anal. Biochem. 385 (2009) 143.
[43] P. D. Ross and S. Subramanian. Biochemistry 20 (1981) 3096.