Green and three-component synthesis of 2-cyclohexylamino-2-oxo-1-arylethyl/alkyl thiophene-3-carboxylates in aqueous medium

Document Type : Original Article

Authors

1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 Faculty of Chemistry, Damghan University, Damghan, Iran & Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran

Abstract

From the Passerini three-component reaction between cyclohexyl isocyanide, thiophene-2-carboxylic acid and aryl/alkyl aldehydes, some new compounds of 2-cyclohexylamino-2-oxo-1-arylethyl/alkyl thiophene-3-carboxylates have been synthesized in 30-45 min in yields in the range of 85% to 90%. Reactions were performed in water solvent and room temperature. The structure of the synthesized compounds was characterized using infrared (IR) and nuclear magnetic resonance (NMR). The use of water as a green solvent, the reaction without energy consumption and at room temperature, no use of catalyst, separation without the use of chromatographic techniques, and the high yields of the reaction are the significant advantages of this Passerini reaction. The antibacterial properties of the synthesized compounds were also tested. The results of experiments showed that these compounds exhibit good antibacterial properties.

Keywords


[1] P. Wu, M. Givskov, T.E. Nielsen, Chem. Rev. 119 (2019) 11245.
[2] A. Zadło-Dobrowolska, D. Koszelewski, D. Paprocki, A. Madej, M. Wilk, R. Ostaszewski, ChemCatChem 9 (2017) 3047.
[3] M. Hasan, M. Zaman, A.A. Peshkov, N. Amire, A. Les, A.A. Nechaev, Y. Wang, S. Kashtanov, E.V. Van der Eycken, O.P. Pereshivko, V.A. Peshkov, Eur. J. Org. Chem. 2020 (2020) 3378.
[4] S. Maeda, S. Komagawa, M. Uchiyama, K. Morokuma, Angew. Chem. Int. Ed. 50 (2011) 644.
[5] C. Lambruschini, L. Moni, L. Banfi, Eur. J. Org. Chem. (2020) in press, DOI: 10.1002/ejoc.202000016.
[6] S. Kamalifar, H. Kiyani, Res. Chem. Intermed. 45 (2019) 5975.
[7] H. Kiyani, M. Bamdad, Res. Chem. Intermed. 44 (2018) 2761.
[8] M. Farahi, B. Karami, M. Davoodi, J. Of Applied Chemistry, 48 (1397) 111, in persian.
[9] M. Abasszadeh, A. Asadipour, J. Of Applied Chemistry, 48 (1397) 285, in persian.
[10] L. Moradi, M. Tadayon, J. Of Applied Chemistry, 46 (1397) 343, in persian.
[11] T. Shamsi, A. Amoozadeh, E. Tabrizian, J. Of Applied Chemistry, 43 (1396) 241, in persian.
[12] M. Darzidaroonkala, H. Kiyani, J. Of Applied Chemistry, 52 (1398) 307, in persian.
[13] H. Kiyani, Curr. Org. Synth. 15 (2018) 1043.
[14] R. Ramozzi, K. Morokuma, J. Org. Chem. 80 (2015) 5652.
[15] P.R. Andreana, C.C. Liu, S.L. Schreiber, Org. Lett. 6 (2004) 4231.
[16] K. Vlahovicek-Kahlina, M. Vazdar, A. Jakas, V. Smrecki, I. Jeric, J. Org. Chem. 83 (2018) 13146.
[17] J. Zhang, S.X. Lin, D.J. Cheng, X.Y. Liu, B. Tan, J. Am. Chem. Soc. 137 (2015) 14039.
[18] Y. Shen, B. Huang, L. Zeng, S. Cui, Org. Lett. 19, (2017) 4616.
[19] M. Serafin, O.P. Priest, J. Chem. Educ. 92 (2015) 579.
[20] A. Llevot, A.C. Boukis, S. Oelmann, K. Wetzel, M.A.R. Meier, Top Curr Chem (Z) 375 (2017) 66.
[21] A. Jakas, A. Visnjevac, I. Jeric, J. Org. Chem. 85 (2020) 3766.
[22] M.S. Ayoup, Y. Wahby, H. Abdel-Hamid, E.S. Ramadan, M. Teleb, M.M. Abu-Serie, A. Noby, Eur. J. Med. Chem. 168 (2019) 340.
[23] J. Wiemann, L. Heller, R. Csuk, Eur. J. Med. Chem. 150 (2018) 176.
[24] R. Wang, Z.Q. Liu, Tetrahedron Lett. 56 (2015) 7028.
[25] C. Lamberth, A. Jeanguenat, F. Cederbaum, A. De Mesmaeker, M. Zeller, H.J. Kempf, R. Zeun, Bioorg. Med. Chem. 16 (2008) 1531.
[26] J. Suc, D. Baric, I. Jeric, RSC Adv. 6 (2016) 99664.
[27] J.J. Haven, E. Baeten, J. Claes, J. Vandenbergh, T. Junkers, Polym. Chem. 8 (2017) 2972.
[28] J.A. Jee, L.A. Spagnuolo, J.G. Rudick, Org. Lett. 14 (2012) 3292.
[29] Z. Du, Y. Lu, X. Dai, D. Zhang-Negrerie, Q. Gao, J. Chem. Res. 37 (2013) 181.
[30] A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht, Mol. Divers. (2020) https://doi.org/10.1007/s11030-020-10049-7.
[31] I.V. Kutovaya, V.G. Nenajdenko, Russ. J. Org. Chem. 56 (2020) 559.
[32] B.O. Beasley, G.J. Clarkson, M. Shipman, Tetrahedron Lett. 53 (2012) 2951.
[33] S.W. Kim, l.S.M. Bauer, R.W. Armstrong, Tetrahedron Lett. 39 (1998) 7031.
[34] G. Cuny, R. Gamez-Montano, J. Zhu, Tetrahedron  60 (2004) 4879.
[35] A. Souldozi, J. Chem. Res. 39 (2015) 177.
[36] I. Yavari, A. Khajeh‑Khezri, M. Ghorbanzadeh, M.R. Halvagar, Monatsh. Chem. 150 (2019) 1317.
[37] D. Paprocki, M. Wilk, A. Madej, P. Walde, R. Ostaszewski, Environ. Chem. Lett. 17 (2019) 1011.
[38] T. Bousquet, M. Jida, M. Soueidan, R. Deprez-Poulain, F. Agbossou-Niedercorn, L. Pelinski, Tetrahedron Lett. 53 (2012) 306.
[39] D. Koszelewski, W. Szymanski, J. Krysiak, R. Ostaszewski, Synth. Commun. 38 (2008) 38, 1120.
[40] K. Sato, T. Ozu, N. Takenaga, Tetrahedron Lett. 54 (2013) 661.
[41] M.A. Mironov, M.N. Ivantsova, M.I. Tokareva, V.S. Mokrushin, Tetrahedron Lett. 46 (2005) 3957.
[42] A.L. Chandgude, A. Dömling, Org. Lett. 18, (2016) 6396.
[43] D.A. Heerding, G. Chan, W.E. DeWolf, Jr., A.P. Fosberry, C.A. Janson, D.D. Jaworski, E. McManus, W.H. Miller, T.D. Moore, D.J. Payne, X. Qiu, S.F. Rittenhouse, C. Slater-Radosti, W. Smith, D.T. Takata, K.S. Vaidya, C.C.K. Yuan, W.F. Huffman, Bioorg. Med. Chem. Lett. 11 (2001) 2061.
[44] S. Kumari, A.V. Carmona, A.K. Tiwari, P.C. Trippier, J. Med. Chem. (2020) https://dx.doi.org/10.1021/acs.jmedchem.0c00530.
[45] A. Kumar, N. Kumar, R. Sharma, G. Bhargava, D. Mahajan, J. Org. Chem. 84 (2019) 11323.
[46] M.B. Kurosawa, R. Isshiki, K. Muto, J. Yamaguchi, J. Am. Chem. Soc. 142 (2020) 7386.
[47] A. Mandal, H. Sahoo, S. Dana, M. Baidya, Org. Lett. 19 (2017) 4138
[48] M. Temprado, M.V. Roux, P. Jimenez, J.Z. Davalos, R. Notario, J. Phys. Chem. A 106 (2002) 11173.
[49] R.C. So, A.C. Carreon-Asok, Chem. Rev. 119 (2019) 11442.