Experimental and theoretical study of hydrolysis for some oxidized urazoles

Document Type : Original Article

Authors

1 Faculty of Basic Sciences, Malayer University, Malayer, Iran

2 Faculty of Basic Sciences, Kharazmi University, Karaj, Iran

3 Faculty of Chemistry, Isfahan University of Technology

Abstract

In this work electrochemical oxidation of some urazole derivatives (1–6) was studied both experimentally and theoretically. The results indicate that the urazoles are converted to oxidized forms (1ox-6ox) via two electron process. The produced species (1ox-6ox) are unstable and participate in hydrolysis reaction, and ring cleavage happens after electrochemical process. Depending on the substituent that is connected to the urazol ring, the rates of the hydrolysis are different. Because the charge of reaction site and bond order of C1-N1 bond are effective on the hydrolysis rate, using computational study, the effects of the both parameters on the hydrolysis rate were analyzed. It was found that various substituents by affecting on the both parameters change the hydrolysis rate. After drawing diagrams of charge of reaction site and bond order of C1-N1 bonds versus hydrolysis rate, it was shown that there are significant relationship between these parameters and hydrolysis rate. Finally these results were used to estimation of hydrolysis rate of some other urazoles (7-10) without conducting laboratory research.

Keywords


[1] J. S. Fritz, and R. T. Keen, Anal. Chem. 24(1952) 308.
[6] A.J. Cessna, J.A. Elliott and J. Bailey, J. Environ. Qual. 41(2012) 882.
[7] T. Gregorić, M. Sedić, P. Grbčić, A. T. Paravić, S. K. Pavelić, M. Cetina, R. Vianello, S. Raić-Malić, Eur. J. Med. Chem. 125(2017) 1247.
[8] H. Ban, M. Nagano, J. Gavrilyuk, W. Hakamata, T. Inokuma, and C.F. Barbas, Bioconjugate Chem. 24(2013) 520.
[9] V. Padmavathi, G. Sudhakar Reddy, A. Padmaja, P. Kondaiah and  Ali-Shazia, Eur. J. Med. Chem. 44(2009) 2106.
[10] M. Koparir, C. Orek, A. E. Parlak, A. Söylemez, P. Koparir, M. Karatepe and S. D. Dastan, Eur. J. Med. Chem. 63 (2013) 340.
[11] H. R. Zare, M. Namazian and N. Nasirizadeh, J. Electroanal. Chem. 584 (2005) 77.
[12] M. Eslami, H. R Zare, M. Namazian, J. Physical Chem. B 116 (2012) 12552.
[13] H. Beiginejad and D. Nematollahi, Electrochim. Acta 114 (2013) 242.
[14] A. Amani, S. Khazalpour and D. Nematollahi, J. Electroanal. Chem. 670 (2012) 36.
[15] H. Beiginejad , A. Amani, D. Nematollahi  and S. Khazalpour, Electrochim. Acta 154 (2015) 235.
[16] D. Nematollahia, H. Shayani-Jama, M. Alimoradi and S. Niroomand, Electrochim. Acta 54 (2009) 7407. 
[17] H.Beiginejad and  D. Nematollahi, Monatsh. Chem. 146 (2015) 1495.
[18] H. Beiginejad, D. Nematollahi, F. Varmaghani and M. Bayat, J. Electrochem. Soc. 160 (2013) H469.
[19] H. Beiginejad, D. Nematollahi, F. Varmaghani, M. Bayat and H. Salehzadeh, J. Electrochem. Soc. 160 (2013) G3001.
[20] S. E. Mallakpour and M. A. Zolfigol, Indian J. Chem. Sec B 38 (1999) 777.
[21] F. Varmaghani, D. Nematollahi, S. Mallakpour and R. Esmailia, Green Chem. 14 (2012) 963.
[22] F. Varmaghani, D. Nematollahi, and S. Mallakpour, J. Electrochem. Soc. 159 (2012) F174.