Study of carbon dioxide adsorption on H-saturated porous graphene sheet and its separation from nitrogen using functional density theory and reactive molecular dynamics

Document Type : Original Article

Authors

Faculty of Chemistry, Semnan University, Semnan, Iran

Abstract

The adsorption of carbon dioxide molecules on four H-saturated porous graphene sheets with different pore sizes and a poreless graphene sheet was investigated and compared with the adsorption of nitrogen molecules on them. Reactive molecular dynamics was used in this study, which took into account the possibility of chemical bond formation and dissociation as well as the effects of polarity. This research demonstrates that all porous graphene sheets and non-cavity graphene sheets absorb carbon dioxide molecules more than nitrogen molecules and can be used to separate these two gases. However, the size and shape of the cavities have no significant impact on gas molecule adsorption on these plates.

Keywords


[1] J. Park, H. Kim, S. S. Han and Y. Jung, J. Phys. Chem. C 3 (2012) 826.
[2] M. Tong, Q. Yang, Y. Xiao and C. Zhong, Phys. Chem. Chem. Phys. 16 (2014) 15189.
[3] T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao and X. Li, J. Phys. Chem. C 18 (2014) 7369.
[4] M. Freemantle, Chem. Eng. News 83 (2005) 49.
[5] D. Jiang, V. R. Cooper and S. Dai, Nano Lett. 9 (2009) 4019.
[6] Y. Tao, Q. Xue, Z. Liu, M. Shan, C. Ling, T. Wu and X. Li, ACS Appl. Mater. Interfaces 6 (2014) 8048.
[7] S. T. Oyama, D. Lee, P. Hacarlioglu and R. F. Saraf, J. Membr. Sci. 244 (2004) 45.
[8] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, Science 342 (2013) 95.
[9] Y. Wall, G. Braun, N. Kaltenborn, I. Voigt and G. Brunner, Chem. Eng. Technol. 35 (2012) 508.
[10] L. Meng, X. Zou, S. Guo, H. Ma, Y. Zhao and G. Zhu, ACS Appl. Mater. Interfaces 7 (2015) 15561.
[11] A. Geim, K. Novoselov, Nature Mater. 6 (2007) 183.
[12] N. M. R. Peres and R. M. Ribeiro, New J. Phys. 11 (2009) 095002.
[13] Z. Yang, Y. Sun, L. B. Alemany, T. N. Narayanan and W. E. Billups, J. Am. Chem. Soc. 134 (2012) 18689.
[14] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Lett. 8 (2008) 2458.
[15] K. Nieszporek and M. Drach, Phys. Chem. Chem. Phys. 17 (2015) 1018.
[16] S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, Nat. Nanotechnol. 7 (2012) 728.
[17] M. S. Boutilier, C. Sun, S. C. O’Hern, H. Au, N. G. Hadjiconstantinou and R. Karnik, ACS Nano, 8 (2014) 841.
[18] M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen and R. Fasel, Chem. Commun. 45 (2009) 6919.
[19] H. Liu, S. Dai and D.-E. Jiang, Nanoscale, 5 (2013) 9984.
[20] M. D. Fischbein and M. Drndic, Appl. Phys. Lett. 93 (2008) 113107.
[21] O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund and J. Keinonen, Phys. Rev. B: Condens. Matter Mater. Phys. 81 (2010) 153401.
[22] H. Liu, Z. Chen, S. Dai and D.-E. Jiang, J. Solid State Chem. 2 (2015) 224.
[23] C. Sun, M. S. Boutilier, H. Au, P. Poesio, B. Bai, R. Karnik and N. G. Hadjiconstantinou, Langmuir, 30 (2014) 675.
[24] M. Shan, Q. Xue, N. Jing, C. Ling, T. Zhang, Z. Yan and J. Zheng, Nanoscale, 4 (2012) 5477.
[25] A. W. Hauser and P. Schwerdtfeger, Phys. Chem. Chem. Phys. 14 (2012) 13292.
[26] J. Schrier, ACS Appl. Mater. Interfaces, 4 (2012) 3745.
[27] R. Lu, Z. Meng, D. Rao, Y. Wang, Q. Shi, Y. Zhang, E. Kan, C. Xiao and K. Deng, Nanoscale, 6 (2014) 9960.
[28] Y. Wang, Q. Yang, J. Li, J. Yang and C. Zhong, Phys. Chem. Chem. Phys. 18 (2016) 8352.
[29] G. Kresse and J. Hafner, Phys. Rev. B 47 (1993) 558.
[30] M. Hacene, A. Anciaux‐Sedrakian, X. Rozanska, D. Klahr, T. Guignon and P. Fleurat‐Lessard, J. Comput. Chem. 33 (2012) 2581.
[31] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976) 5188.
[32] D. N. Theodorou and U. W. Suter, Macromolecules 19 (1986) 139.
[33] S. Plimpton, J. Comp. Phys. 117 (1995) 1.
[34] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81 (1984) 3684.
[35] D. J. Evans and B. L. Holian, J. Chem. Phys. 83 (1985) 4069.
[36] A.C.T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, J. Phys. Chem. A 105 (2001) 9396.
[37] K. Chenoweth, A.C.T. van Duin, and W.A. Goddard, J. Phys. Chem. A 112 (2008) 1040.
[38] ReaxFF 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
[39] M. Kowalik, C. Ashraf, B. Damirchi, D. Akbarian, S. Rajabpour, and A. C. T. van Duin, J. Phys. Chem. B 123 (2019) 5357.
[40] J. Schrier, ACS Appl. Mater. Interfaces 3 (2011) 4451.
[41] P. V. Avramov, S. Sakai, S. Entani, Y. Matsumoto and H. Naramoto, Chem. Phys. Lett. 508 (2011) 86.
[42] R. W. F. Bader, Acc. Chem. Res. 18 (1985) 9.