Investigation of reducing corrosion of steel in hydrochloric acid medium in the presence of inhibitory agent based on iron oxide nanoparticles

Document Type : Original Article

Authors

1 Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran

2 Radiation Application Research Institute, Nuclear Science and Technology Research Institute, Tehran, Iran

3 Nuclear Materials and Fuel Research Institute, Nuclear Science and Technology Research Institute, Tehran, Iran

Abstract

The aim of this study was to investigate the inhibitory effect of a prepared complex on the magnetic iron oxide nanoparticles to increase the surface resistance of metals against corrosion. A new chelating agent was prepared from a coupling of xanthate and chloroacetamide and then grafted on surface of iron oxide nanoparticles that were synthesized by co-precipitation method. The surface of the nanoparticles was coated with silica to stabilize against oxidation as well as to prevent their accumulation, and then this surface was modified and functionalized by amine groups. Then the prepared complex was characterized by FT-IR, SEM and NMR and its effect on metal surface corrosion in hydrochloric acid medium was investigated using electrochemical impedance test (EIS). The results were evaluated in terms of increasing inhibitory concentration, decreased surface roughness and load transfer layer resistance at the electrode surface. The results showed that with increasing the inhibitor concentration, the surface roughness decreased and the resistance of the charge transfer layer at the electrode surface increased to 356.57 Ω cm2 and the best result was obtained at a concentration of 100 ppm of the inhibitor.

Keywords


[1] T. Douadi. H. Hamani. D. Daoud. M. Al-noaimi. J. Taiwan Ins. Chem. Eng. 71 (2016) 1.
[2] A. Ghazoui. N. Benchat. F. El-hajjaji. M. Taleb. Z. Rais. J. Alloys. Compd. 693 (2017) 510.
[3] M. S. Al-Otaibi. A. Al-Mayouf. A. A. Mousa. Arab. J. Chem. 7 (2014) 340.
[4] I. B. Obot. N. O. Obi-Egbedi. S. A. Umoren. Corros. Sci. 51 (2009) 1868.
[5] A. Yıldırım. M. Çetin. Corros. Sci. 50 (2008) 155.
[6] V. Gentil. Corrosão, 4ª ed., Rio de Janeiro: LTC, (2003).
[7] S. Mato. G. Alcal´a. T. G.  Woodcock. Electrochim. Acta. 50 (2005) 2461.
[8] P. R. Roberge. Handbook of corrosion engineering. New York: Mc Graw Hill Handbook. (1999).
[9] S. Dimitra. Synth. Met. 118 (2001) 133.
[10] A. Negm. G. Kandile. A. Mohammed. Corros. Sci. 65 (2012) 94.
[11] A. M. Abdel-Gaber. B. A. Abd-El-Nabey. E. Khamis. Desalination. 278 (2011) 337.
[12] M. Salasi. T. Sharabi. E. Roayaei. M. Aliofkhazraei. Mat. Chem. Phys. 104 (2007) 183.
[13] G. Blustein. R. Romagnoli. Colloids Surf. A Physicochem. Eng. Asp. 290 (2006) 7.
[14] P. Bommersbach. C. Alemany-Dumont. J. P.  Millet. Electrochim. Acta. 51 (2005) 1076.
[15] A. Lecante. F. Robert. P. A. Blandinières. C. Roos. Curr. Appl.Phys. 11 (2011) 714.
[16] K. Radojčić. S. Berković. J. Kovač. Corros. Sci. 50 (2008) 1498.
[17] P. C. Okafor. M. E. Ikpi. I. E. Uwah. Corros. Sci. 50 (2008) 2310.
[18] A. Umoren. M. Solomon. J. Environ. Chem. Eng. 5 (2017) 246.
[19] E. Ituen. O. Akaranta. A. James. Sustainable Materials and Technologies. 11 (2017) 12.
[20] M. Shabani-Nooshabadi. M. S. Ghandchi. J.  Ind. Eng. Chem. 31 (2015) 231.
[21] M. Bozorg.T. S. Farahani.Z. Chaghazardi. Ind. Eng. Chem. Res. 53 (2014) 4295.
[22] T. Douadi. H. Hamani. D. Daoud. M. Al-noaimi. J. Taiwan Inst. Chem. Eng. 71 (2017) 388.
[23] A. Ghazoui. N. Benchat. F. El-hajjaji. M. Taleb. R. Saddik. J. Alloys. Compd. 693 (2017) 510.
[24] T. T. Qin. J. Li.H. Q. Luo. Corros. Sci. 53 (2011) 1072.
[25] Z. Pourmanouchehri. M. Jafarzadeh. S. Kakaei. E. Sattarzadeh. J. Inorg. Organomet. Polym. Mater. 28 (2018) 1980.
[26] E. Sattarzadeh. M. M. Amini. S. Kakaei. A. Khanchi. Radiochim. Acta. 106 (2018) 897.
[27] S. T. Tabatabaei. A. Malekzadeh. L. Sarbaz. H. Niknejad. A. Ramazani. J. of Applied Chemistry. 15 (2020) 55. (In Persian).
[28] M. Fathi. F. Moghadamianpour. J. of Applied Chemistry. 11 (2016) 47. (In Persian).
[29] M. Bahmaie. L. Abbasi. M. Faraji. J. of Applied Chemistry. 8 (2013) 29. (In Persian)
[30] E. Sattarzadeh. M. M. Amini. S. Kakaei. A. Khanchi. J. Radioanal. Nucl. Chem. 317 (2018) 1333.
[31] E. Sattarzadeh. S. Kakaei S. M. M. Moharreri. Advances in Nanochemistry. 2 (2019) 62.
[32] P. D. T. O'Connor. Qual. Reliab. Eng. Int. 3 (1987) 210.
[33] M. S. razi. Corrosion control in industries. Iranian Corrosion Association. (1376) vol 1. (In Persian).
[34] C. Nathan. Corrosion inhibitors. Huston Texas, National Association of Corrosion Engineers (NACE), Houston. (1973). PP. 279.
[35] I. Radojcic. K. Berkovic. S. Kovac. Corros. Sci. 50 (2008) 1498.
[36] C. M. Fernandes. L. X. Alvarez. N. E. dos Santos. Corros. Sci. 149 (2019) 185.
[37] M. A. Bedair. S. A. Soliman. M. A. Hegazy. J. Adhes. Sci.Technol. 33 (2019) 1139.
[38] M. A. Hegazy. A. M. Badawi. Corros. Sci. 69 (2013) 110.
[39] R. Sadeghi Erami. M. Amirnasr. S. Meghdadi. M. Talebian. Corros. Sci. 151 (2019) 190.
[40] C. Wang C. J. Chen. J.  Han. C. Wang. J. Alloys. Compd. 771 (2019) 736.