Synthesis and characterization of gold coated iron oxide nanoparticles for use in hyperthermia

Document Type : Original Article


Department of Chemistry, Farhangian University, Tehran, Iran


In this work, Gold coated iron oxide nanoparticles (MNPs @GLYMS@ Au-NPs) with heat therapy application were synthesized and characterized. Gold cations in the presence of honey as a reducing agent were reduced to gold nanoparticles. The magnetic properties of the modified nanoparticles (VSM) were measured using an equal magnetometer (-35 to +35) emu/g. The presence of Au-S and Fe-O bonds and the Fe3O4 spinel structure were confirmed by the FT-IR (FT-IR) and X-ray diffraction spectrometry (XRD) spectroscopy, respectively. Scanning electron microscopy (SEM) showed the spherical morphology of a surface-modified magnetic nanoparticle with a size of 45-55 nm and the morphology of Fe3O4 nanoparticles were kept after the bonding of the gold nanoparticles. The results of this work showed that nanoparticles have significant magnetic properties and surface functionalized. Because of this nanoparticles provide a useful and important tool creating an acceptable method for improving the quality of hyperthermia due to the production of effective frictional heat and rapid transfer.


[1] N. Sounderya, Y. Zhang, Recent Pat. Biomed. Eng. 1 (2008) 34.
[2] M. Bahmaie, L. Abbasi, M. Faraji, J. Of Applied Chemistry, 26 (1392) 29. in persian.
[3] E. Y. Lukianova-Hleb, Y. S. Kim, I. Belatsarkouski, A. M. Gillenwater, B. E. O'Neill, D. O. Lapotko, Nat. nanotechnology. 11 (2016) 525.
[4] C. Cunha, S. Panseri, D. Iannazzo, A. Piperno, A. Pistone, M. Fazio, A. Russo, M. Marcacci, S. Galvagno, Nanotechnology, 23 (2012) 465102.
[5] A. Chan, R. P. Orme, R. A. Fricker, P. Roach, Adv. Drug. Deliv. Rev. 65 (2013) 497.
[6] C. Grüttner, K. Müller, J. Teller, F. Westphal, Int. J. Hyperthermia. 29 (2013) 777.
[7] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, J. Magn. Magn. Mater. 293 (2005) 483.
[8] M. Koukabi, F. Arabgol, M. Manteghian, Iran. Polym. J. 1 (2005) 71
[9] C. Adams, L. L. Israel, S. Ostrovsky, A. Taylor, H. Poptani, J. P. Lellouche, D. Chari, Adv. healthc. mater. 5 (2016) 841.
[10] L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, R. A. Drezek, Small, 7 (2011) 169.
[11] M. K. Riley, W. Vermerris, Nanomaterials, 7 (2017) 94.
[12] A. Cervadoro, C. Giverso, R. Pande, S. Sarangi, L. Preziosi, J. Wosik, A. Brazdeikis, P. Decuzzi, PloS one, 8 (2013).
[13] L. Goldstein, M. Dewhirst, M. Repacholi, L. Kheifets, Int. J. Hyperthermia. 19 (2003) 373.
[14] C. S. Kumar, F.  Mohammad, Adv. Drug. Deliv.Rev. 63 (2011) 789.
[15] G. Bao, S. Mitragotri, S. Tong, Annu. Rev. Biomed. Eng. 15 (2013) 253.
[16] Y. Chen, L. Liu, Adv. Drug. Deliv. Rev. 64 (2012) 640.
[17] J. Gao, H. Gu, B. Xu, Acc. Chem. Res. 42 (2009) 1097.
[18] A. K. Mittal, Y. Chisti, U. C. Banerjee, Biotechnol. adv. 31 (2013) 346.
[19] T. Nicolai, Colloids and Surfaces B: Biointerfaces, 137 (2016) 32.
[20] S. K. Ghosh, T. Pal, Chem. Rev. 107 (2007) 4797.
[21] W. Zhao, W. Chiuman, J. C. Lam, S. A. McManus, W. Chen, Y. Cui, R. Pelton, M. A. Brook, Y. Li, J. Am .Chem. Soc. 130 (2008) 3610.
[22] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, Chem. Soc. Rev. 41 (2012) 2740.
[23] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angewandte Chemie International Edition, 49 (2010) 3280.
[24] J. J. Storhoff, C. A. Mirkin, Chem. Rev. 99 (1999) 1849.
[25] Y. Zhang, L. Zhang, X. Song, X. Gu, H. Sun, C. Fu, F. Meng, J. nanomater. 2015 (2015).
[26] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander, et al, Chem. Rev. 108 (2008) 2064.
[27] D. Habibi, S. Kaamyabi, M. M. Amini, Appl. surf. sci. 320 (2014) 301.
[28] S. Pan, H. Shen, Q. Xu, J. Luo, M. Hu, J. Colloid. Interface Sci. 365 (2012) 204.
[29] D. Philip, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73 (2009) 650.
[30] E. R. Balasooriya, C. D. Jayasinghe, U. A. Jayawardena, R. W. D. Ruwanthika, R. Mendis de Silva, P. V. Udagama, J. Nanomater. 2017 (2017).
[31] S. Ding, N. Anton, S. Akram, M. Er-Rafik, H. Anton, A. Klymchenko, W. Yu, T. F. Vandamme, C. A. Serra, Soft Matter, 13 (2017) 1660.
[32] E. Ebrahimi, A. A. Khandaghi, F. Valipour, S. Babaie, F. Asghari, S. Motaali, E. Abbasi, A. Akbarzadeh, S. Davaran, Artificial cells nanomedicine and biotechnology, 44 (2016) 550.
[33] D. Jaque, Nanoparticles for photothermal therapies, 6 (2014) 9494.
[34] Y. Kakiuti, S. Kida, J. Quagliano, Spectrochim. Acta, 19 (1963) 201.