Measurement and Modeling of Liquid-Liquid Equilibrium Data of the Ternary system (Water + Butyric Acid + MethylCyclohexanol) at 293.2 K

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran

2 Scientific Chemistry Laboratory, Kimia Teyf Khazar Company

Abstract

In this research, phase equilibria of the ternary system (water + butyric acid + methylcyclohexanol) was investigated and experimental data of liquid-liquid equilibrium were obtained at 293.2 K and ambient pressure. Solubility curve was achieved using cloud point method and Type 1 behavior was observed for liquid-liquid ternary mixture. Tie-lines were measured via acid-base and Karl-Fischer titrations. The Othmer -Tobias and Hand equations verified that the experimental tie-line points are reliable. Regression coefficients in both the equations were 0.991. Distribution coefficients and separation factors were determined over the biphasic region. The maximum and minimum values obtained for these two parameters were 5.23 and 3.84 for distribution coefficient and 48.0 and 32.7 for separation factor, respectively. The calculated values for the parameters showed that methylcyclohexanol is a proper solvent for separation of butyric acid from water. The NRTL thermodynamic model was used for correlation of experimental tie-lines. The quality of modeling was investigated using the calculation of rmsd and Gibbs free energy of mixture. The calculated value for rmsd (0.57 %) showed that modeling was done well.

Keywords


[1] H. Pahlavanzadeh, G. Khayati, N. Ghaemi and E. Vasheghani-Farahani, Iran. Chem. Chem. Eng. 31 (2012) 59.
[2] S. Shekarsaraee and K. Kazemi, Adv. J. Chem. A 3 (2020) 432.
[3] M. Yaftian and M. Vahedpoor, Iran. Chem. Chem. Eng. 19 (2000) 60.
[4] M. Alimoradi, M. Gharib, S. M. Hosseini, R. heydari, J. Of Applied Chemistry, 12 (1396) 171.
[5] S. Kiaparspour, F. Abbasitabar, J. Of Applied Chemistry, 14 (1398) 97.
[6] S. M. Sorouraddin, K. Asadpour-Zeynali, I. Fathollahi, J. Of Applied Chemistry, 14 (1398) 139.
[7] J. Zigova and E. Sturdik, J. Ind. Microbiol. Biotechnol24 (2000) 153.
[8] W. Li, H.-J. Han and C-h. Zhang, Afr. J. Microbiol. Res. 5 (2011) 661.
[9] W. Franco and I. M. Perez-Diaz, Food Microbiol., 32 (2012) 338.
[10] Y. Chao, W. Shutian, Z. Yang, Z. Zuoxiang and X. Weilan, J. Chem. Eng. Data 62 (2017) 2244.
[11] M. Bilgin, S. I. Kırbaslar, O. Ozcan and U. Dramur, J. Chem. Eng. Data 51 (2006) 1546.
[12] S. I. Kırbaslar, S. Sahin and M. Bilgin, J. Chem. Thermodyn. 39 (2007) 1279.
[13] S. I. Kırbaslar, M. Bilgin and D. Batr, J. Chem. Thermodyn, 37 (2005) 175.
[14] S. I. Kırbaslar, S. Sahin and M. Bilgin, J. Chem. Thermodyn. 39 (2007) 284.
[15] D. Ozmen, Fluid Phase Equilibr. 269 (2008) 12.
[16] S. Cehreli and T. Gundogdu, Fluid Phase Equilibr. 303 (2011) 168.
[17] A. Gok, S. I. Kırbaslar, H. Uslu and H. Ghanadzadeh Gilani, Fluid Phase Equilibr. 303 (2011) 71.
[18] Z. Li, W. Qin and Y. Dai, J. Chem. Eng. Data 47 (2002) 843.
[19] E. Sabolova, S. Schlosser and J. Martak, J. Chem. Eng. Data 46 (2001) 735.
[20] T. M. Letcher and G. G. Redhi, J. Chem. Eng. Data 44 (1999) 1183.
[21] S. I. Kırbaslar, J. Chem. Thermodyn. 38 (2006) 696.
[22] M. Bilgin, S. I. Kırbaslar, O. Ozcan and U. Dramur, J. Chem. Thermodyn. 37 (2005) 297.
[23] M. Bilgin, J. Chem. Thermodyn. 38 (2006) 1634.
[24] H. Ghanadzadeh, A. Ghanadzadeh, S. Asgharzadeh and M. Moghadam, J. Chem. Thermodyn. 47 (2012) 288.
[25] H. Ghanadzadeh, A. Ghanadzadeh, S. Asgharzadeh and N. Dastmoozeh, Thermochimica Acta 523 (2011) 154.
[26] H. Ghanadzadeh, A. Ghanadzadeh, M. Janbaz and S. Shekarsaraee, Fluid Phase Equilibr. 332 (2012) 151.
[27] H. Ghanadzadeh Gilani, A. Ghanadzadeh Gilani and M. Janbaz, J. Chem. Thermodyn. 57 (2013) 152.
[28] A. Ghanadzadeh Gilani, H. Ghanadzadeh Gilani, S. L. Seyed Saadat and M. Janbaz, J. Chem. Thermodyn. 60 (2013) 63.
[29] M. Lalikoglu and  M. Bilgin, Fluid Phase Equilibr. 371 (2014) 50.
[30] L. Luo, D. Liu L. Li and  Y. Chen, Fluid Phase Equilibr. 403 (2015) 30-35.
[32] A. Ghanadzadeh Gilani, F. Amouzadeh and B. Ghalami-Choobar, J. Chem. Thermodyn. 43 (2020) 106026.
[33] A. G. Gilani, F. Amouzadeh and T. Taki, J. Mol. Liq. 324 (2021) 114733.
[34] I. Yalın, S. Cehreli, A. E. Andreatta and A. Senol, J. Sol. Chem49 (2020) 1009.
[35] Y. Chen, Y. Wang, S. Zhou, H. Chen, D. Liu and L. Li, J. Chem. Thermodyn111 (2017) 72.
[36] A. Türkmenoğlu, D. Özmen and S. Bekri, J. Chem. Eng. Jpn52 (2019) 377.
[37] S. Shekarsaraee, H. T. Nahzomi and E. Nasiri-Touli, Russ. J. Phys. Chem. A 91 (2017) 2078.
[38] A. Senol, J. Chem. Eng. Data 49 (2004) 1815.
[39] A. Senol, J. Chem. Thermodyn. 37 (2005) 1104.
[40] N. Arda, J. Chem. Thermodyn. 24 (1992) 145.
[41] D. F. Othmer and P. E. Tobias, Ind. Eng. Chem. 34 (1942) 690.
[42] D. B. Hand, J. Phys. Chem. 34 (1930) 1961.
[43] H. Renon and J. M. Prausnitz, AIChE J. 14 (1968) 135.
[44] M. J. Ebrahim Khani, H. Ghanadzadeh, Iranian Chem. Eng. J., 19 (2020) 81, in Persian.
[45] S. Cehreli, B. Tatli and P. Bagman, J. Chem. Thermodyn. 37 (2005) 1288.
[46] A. Senol, Fluid Phase Equilibr. 227 (2005) 87.
[48] J. M. Sørensen, T. Magnussen, P. Rasmussen and A. Fredenslund, Fluid Phase Equilibr3 (1979) 47.
[49] A. Marcilla, J. A. Labarta, M. D. Serrano Cayuelas, M. D. M. Olaya, Open Thermodyn. J. 5 (2011) 48.