Investigation of photo catalytic properties of ZIF-8 emitted based on titanium dioxide nano tubes in removal of aqueous pollutants

Document Type : Original Article

Authors

Quchan University of Technology, Faculty of Chemical Engineering, Quchan, Iran

Abstract

In this study, the photocatalytic performance of ZIF-8, as one of the most important MOFs, was improved by impregnation on the TiO2 nanotubes and was used for hybrid photocatalytic degradation of Methyl Orange from aqueous solutions. The prepared nanostructure was characterized by XRD, TEM, EDX, BET, SEM, and FTIR analyses and their results confirmed the successful fabrication of nanocrystals with spherical morphology. Also, the meso/macro cavity structure with slit-like cavities has been obtained by SEM and BET results. The photocatalytic behaviour of the nanostructure was investigated under UV light irradiation. In order to optimize the degradation process, the effect of various parameters, such as pH, photocatalyst concentration, and the proposed mechanism for dye degradation have been evaluated. The results showed that the methyl orange photodegradation efficiency of 86% was reached using ZIF-8/TiO2 at pH 7 and photocatalyst concentration of 0.5 g/Lit after 60 min under UV irradiation.

Keywords


[1] L. Shen., R. Liang., L. Wu., Chinese J. Catal. 36 (2015) 2071.
[2] Y. Kinoshita،, I. Matsubara, T. Higuchi, Bull. Chem. Soc. Japan 32 (1959) 1221.
[3] A. Hafizi, M.N. Shahrak, A. Ahmadpour, M. Maghrebi, A. Shahsavand, Iran. J. Chem. Chem. Eng. 12 (2014) 19, In Persian.
[4] A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpää, Chemosphere 160 (2016) 30.
[5] J. R. Li., J. Sculley., Chem. Rev. 112 (2011) 869.
[6] Z. Avakh, M. Shadman Lakmehsari, B. Farajmand, M.A. Rezvani., J. Of Applied Chemistry 16 (1400) 9, in Persian.
[7] M.P.Suh, H.J.Park, T.K.Prasad, Chem. Rev. 112 (2011) 782.
[8] K.-G. Liu, Z. Sharifzadeh, F. Rouhani, M. Ghorbanloo, A. Morsali, Coordin. Chem. Rev. 436 (2021) 213827.
[9] H. Konnerth, B.M. Matsagar, S.S. Chen, M.H.G. Prechtl, F.-K. Shieh, K.C.W. Wu, Coordin. Chem. Rev. 416 (2020) 213319.
[10] P. Mahata, G. Madras, S. Natarajan, J. Phys. Chem. B 110 (2006) 13759.
[11] D.L.R. K.Sumida, J.A.Mason, T.M.McDonald, E.D.Bloch, Z.R.Herm, Chem. Rev. 112 (2011) 724.
[12] Y. Xiao, X. Guo, N. Yang, F. Zhang, J. Energy Chem. 58 (2021) 508.
[13] X. Zhao, J. Li, X. Li, P. Huo, W. Shi, Chin. J. Catal. 42 (2021) 872.
[14] S. Guo, L. Chi, T. Zhao, Y. Nan, X. Sun, Y. Huang, B. Hou, X. Wang, J. Electroanal. Chem. 880 (2021) 114915.
[15] L. Xie, Z. Yang, W. Xiong, Y. Zhou, J. Cao, Y. Peng, X. Li, C. Zhou, R. Xu, Y. Zhang, Appl. Surf. Sci. 465 (2019) 103.
[16] L. Han, X. Zhang, D. Wu, J. Mater. Sci.: Mater. Elect. 30 (2019) 3773.
[17] Q. Wei, W. Li, C. Jin, Y. Chen, L. Hou, Z. Wu, Z. Pan, Q. He, Y. Wang, D. Tang, J. Rare Earth (2021) In Press.  
[18] N. Toutounchian, A. Ahmadpour, M.M. Heravi, F.F. Bamoharram, A. Ayati, F. Deymeh, Res. Chem. Intermed. 42 (2016) 3283.
[19] A. Ayati, A. Ahmadpour, F.F. Bamoharram, M. Mänttäri, M. Sillanpää, Chemosphere 107 (2014) 163.
[20] L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, Y. Zhang, J. Hazard. Mater. 361 (2019) 85.
[21] H. Tian, S. Wang, C. Zhang, J.-P. Veder, J. Pan, M. Jaroniec, L. Wang, J. Liu, J. Mater. Chem. A 5 (2017) 11615.
[22] C. Xue, F. Zhang, Q. Chang, Y. Dong, Y. Wang, S. Hu, J. Yang, Chem. Lett. 47 (2018) 711.
[23] A. Moatamed Sabzevar, M. Ghahramaninezhad, M. Niknam Shahrak, Fuel 288 (2021) 119586.
[24] X. Qi, F. Shang, T. Wang, Y.M.O. logo, Y. Yan, CrystEngComm 22 (2020) 4250.
[25] Q. Liu, B. Zhou, M. Xu, G. Mao, RSC Adv. 7 (2017) 8004.
[26] J. Ran, H. Chen, S. Bi, Q. Guo, C. Yan, X. Tang, D. Cheng, G. Cai, X. Wang, Prog. Org. Coat. 152 (2021) 106123.
[27] R.Chandra،, S. Mukhopadhyay, M.Nath, Mater. Lett. 164 (2016) 571.
[28] F. Fazlali, A. Hajian, A. Afkhami, H. Bagheri, J. Photochem. Photobiol. A: Chem 400 (2020) 112717.
[29] R. Hejazi, A.R. Mahjoub, A.H.C. Khavar, Z. Khazaee, J. Photochem. Photobiol. A: Chem. 400 (2020) 112644.
[30] A.H. Asl, A. Ahmadpour, N. Fallah, J. Of Applied Chemistry 12 (1396) 253 in Persian
[31] M. mozaffari, A. Ebadi, J. Of Applied Chemistry 16 (1400) 29-46, In Persian.
[32] S. Mohammadnezhad, A. Ayati, A. Ahmadpour, H. Karimi-Maleh, J. Of Applied Chemistry, 15 (1399) 337, In Persian.
[33] G. Mansouri, M. Mansouri, J. Of Applied Chemistry 15 (1399) 241, In Persian.
[34] A. Ayati, B. Tanhaei, F.F. Bamoharram, A. Ahmadpour, P. Maydannik, M. Sillanpää, Sep. Pur. Technol. 171 (2016) 62.
[35] A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Mänttäri, M. Lahtinen, M. Sillanpää, Sep. Pur. Technol. 133 (2014) 415.
[36] J.C. Cardoso, S. Stulp, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, M.V.B. Zanoni, Appl. Catal. B: Environ. 225 (2018) 563.
[37] K. Aijo John, J. Naduvath, S.K. Remillard, S. Shaji, P.A. DeYoung, Z.T. Kellner, S. Mallick, M. Thankamoniamma, G.S. Okram, R.R. Philip, Chem. Phys. 523 (2019) 198.
[38] H. Song, Z. Sun, Y. Xu, Y. Han, J. Xu, J. Wu, T. Sun, H. Meng, X. Zhang, Sep. Pur. Technol. 228 (2019) 115764.
[39] S. Radoor, J. Karayil, A. Jayakumar, J. Parameswaranpillai, S. Siengchin, Colloid Interface Sci. A 611 (2021) 125852.
[40] F.A. Beni, A. Gholami, M.N. Shahrak, A. Ayati, M. Sillanpää, Micropor. Mesopor. Mater. 303 (2020) 110275.
[41] X. Yang, Z. Wen, Z. Wud, X. Luo, Inorg. Chem. Front. 5 (2018) 687.
[42] Y. Chen, B. Zhai, Y. Liang, Y. Li, J. Li, J. Solid State Chem. 274 (2019) 32.
[43] W.Q. Chen, L.Y. Li, L.Li, W.H. Qiu, ØŒL.Tang, L. Xu, K.J. Xu, M.H. Wu, Eng. 5 (2019) 755.
[44] A. Galarneau, D. Mehlhorn, F. Guenneau, B. Coasne, F. Villemot, D. Minoux, C. Aquino, J.-P. Dath, Langmuir 34 (2018) 14134.
[45] R. Li, W. Li, C. Jin, Q. He, Y. Wang, J. Alloys Compd. 825 (2020) 154008.
[46] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C: Photochem. Rev. 25 (2015) 1
[47] X. Kang, S. Liu, Z. Dai, Y. He, X. Song, Z. Tan, Catal. 9 (2019) 191.
[48] B. Ghasemi, B. Anvaripour, S. Jorfi, N. Jaafarzadeh, Int. J. Photoenergy 2016 (2016) 2782607.
[49] M. He, J. Yao, Q. Liu, K. Wang, F. Chen, H. Wang, Micropor. Mesopor. Mater. 184 (2014) 55.