Investigation of the effect of polyaniline additive on reducing static charge accumulation in HMX and PETN explosives

Document Type : Original Article


Malek Ashtar University of Technology, Faculty of Chemistry, Tehran, Iran


One of the main causes of explosions events in high energetic material industry is static electricity. Handling of energetic materials leads to the generation of electrostatic charges. Most energetic materials are non-conductive, easily accumulate charge and are highly sensitive to Electrostatic discharge (ESD) ignition. To reduce the risk aroused by ESD ignition hazard in the processing and handling of energetic materials, antistatic modifications are necessary. In this study, to reduce the accumulation of static charge, synthetic polyaniline additive has been used by slurry, water-evaporation, solvent evaporation and physical mixture methods. Among the studied samples, the composition containing 5% by weight of polyaniline by the slurry method were studied by electrostatic charging test setup to investigate and to measure the production and accumulation of static charge. In this evaluation, the amount of reduction of static charge accumulation in Cyclotetramethylene Tetranitramie (HMX) and Pentaerythritol Tetranitrate (PETN) explosives, using polyaniline, was very significant, from -3,600 and -5,400 nC/kg to 0 nC/kg, respectively. so that in both explosive compounds, the charge accumulation was reduced nearly 100%.


[1] M. Senobar Mansoor abad. MSc. Thesis, Malek Ashtar University of Technology (1396).
[2] J. Padfield, M. D. Ferran and A. L. Llnmei, Energy Mater, 32 (2014) 106.
[3] E. Collins, M. Pantoya, A. Neuber and M. Daniels, Propul Power, 30 (2014).
[4] A. Bach, J. Energ. Mater, 33 (2015) 260.
[5] P.E.Secker and J.N.Chubb, Electrostatics, 16 (1984) 1.
[6] W. R. Harper, original edition, Oxford University Press, 161(1967) 369.
[7] M.B. Talawar, A.P. Agrawal, M. Anniyappan, D.S. Wani, M.K. Bansode and G.M. Gore, Hazard Mater, 137 (2006) 1074.
[8] D. Stranneby, Hazard Mater, 4 (2013)10.
[9] Sh. zafar and B. Bhavan, Bureau of Indian Standards, Electrical Installations Sectional Committee, (1990)732.
[11] J.Cross, CRC Press; 1st Edition, 38 (1987)424.
[12] C. B. Storm, J. R. Stine and J. F. Kramer, ACS Appl. Energy Mater, (1990) 605.
[13] H.Shirakawa, E. J. Louis, A. G. Macdiarmid, Ch. K. Chiang and A. J. Heeger, JCS Chem Comm, 16 (1977) 578.
[14] Th. H. Pratt, AIChE, 200 (2010).
[15] Ch. Wei. An, Fe. Sh. Li, Xi.La. Song and Yi. Wang, Propellants Explos. Pyrotech, 34 (2009)400.
[16] Li. Zhimin and Z.Zhou, Mater. Lett, 123 (2014) 79.
[17] P. Gibot, A. Bach, L. Vidal, F. Schnell, R. Gadiou and D. Spitzer, Energy Mater, 22 (2016).
[18] Z. Mingrui, Z.Li, Z.Zhou, T.Zhang, B. Wu, L. Yang and J. Zhang, Propellants Explos. Pyrotech, 38 (2013) 569.
[19] F. Pessina, F. Schnell and D.Spitzer, Chem. Eng. J, 291 (2016) 12.
[20] E. S. Collins, B. R. Skelton. M. L. Pantoya. F. Irin, M. J. Green and M.A. Daniels, Combust Flame, 162 (2015) 1417.
[21] P. W. Linder, Phys Chem Solids, 57 (1961) 1024.
[22] J. A. Puszynski, N. Mehta, K. D. Oyler, G. Cheng, A. Shah, K.Yee and M. Bichay, Energy Mater, (2016) 233.
[23] S. M. J. Hosseini. MSc. Thesis, Malek Ashtar University of Technology (1396).
[24] M. Shafiei, B. Sohrabi, A. Mollahosseini, JACR, 1 (1393) 35.
[25] E. Nazarzadeh Zareh, JACR, 13 (1389) 83.
[26] K. M. Molapo, P. M. Ndangili, R. F. Ajayi, G. Mbambisa, S. M. Mailu, N. Njomo, M. Masikini, P. Baker and E. I. Iwuoha, Electrochem. Sci., 7 (2012) 11859.
[27] H. Isazadeh, A. Zoheiri, Photopolym Sci Technol, 4 (1384) 204.
[28] M. Shabani Nooshabadi, F. Karimiyan Taheri, J. Appl. Chem, 4 (2016) 9.
[29] W.  W.  Focke, G. E.  Wnek, Electroanal Chem Interfacial Electrochem, 256 (1988) 343.
[30] S.  Ito, K. Murata, S. Teshima, R. Aizawa, Y. Asako, K. Takahashi and B.  M.  Hoffman, Synth Met, 96 (1998) 161.
[31] M. Goudarzi, M. Mahyari, M. Fathollahi, S, G, Hosseini, J Electrostat,108 (2020) 103.
[32] H. Lotfzadeh, F. Hemmati,M. Fathollahi, J Electrostat,108 (2020) 103.