Optimization of reactive dye removal by electrochemical oxidation with Ti/nanoZnO (Experimental study)

Document Type : Original Article

Authors

Department of Chemistry, Semnan University, Semnan, Iran

Abstract

In the current study, Ti/nanoZnO electrode was prepared by the electrophoretic deposition (EPD) method. The crystal structure, morphology, elemental analysis, and electrochemical properties of the prepared electrode were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) with an X-ray spectrometer attached, cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), chrono-amperometry (CA), and chrono-potentiometry (CP). Obtained results showed that the prepared Ti/nanoZnO electrode possessed a uniform coating with more porous morphology, reduced charge transfer resistance, and improved electrochemical stability. Electrocatalytic performance was evaluated by studying the electrochemical removal of Reactive orange 7 (RO7) dye as a target pollutant on the Ti/nanoZnO electrode. Independent operating parameters namely pH, current density, electrolyte concentration, and reaction time were selected to model and optimize the removal process by central composite design (CCD). The color removal efficiency of 20.73% was obtained for RO7 after 60 min under optimum conditions. Eventually, from the findings of this study, it can be concluded that modifying the titanium (Ti) substrate using ZnO nanoparticles could significantly improve the electrochemical properties of the bare Ti electrode.

Keywords


[1] L. Chen, C. Lei, Z. Li, B. Yang, X. Zhang and L. Lei, Chemosphere, 210 (2018) 516.
[2] N. Setarehshenas, S. H. Hosseini, M. Nasr Esfahany, M. Mansouri, G. Ahmadi, 13 (2018) 53.
[3] P. Nidheesh, M. Zhou and M. A. Oturan, Chemosphere, 197 (2018) 210.
[4] F. Nabizadeh Chianeh, B. Mohammadi, A. Asghari, Appl. Chem., 12 (2017) 209.
[5] M. El Kateb, C. Trellu, A. Darwich, M. Rivallin, M. Bechelany, S. Nagarajan, S. Lacour, N. Bellakhal, G. Lesage and M. Héran, Water. Resea, 162 (2019) 446.
[6] F. Mahmoudian, F. Nabizadeh Chianeh, S. M. Sajjadi, Appl. Chem., 1399 (2020) 27.
[7] H. Feng, Z. Chen, X. Wang, S. Chen and J. Crittenden, J. Chem. Eng, 413 (2021) 127492.
[8] M. Esmaelian, F. N. Chianeh and A.R. Asghari, J. Ind. Eng. Chem, 78 (2019) 97.
[9] M. R. D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Environ. manag, 198 (2017) 78.
[10] S. Das and V.C. Srivastava, Material. Scien. Semic. Proce, 57 (2017) 173.
[11] W. Wu, Z. H. Huang and T. T. Lim, Applied. Catal.  A: General, 480 (2014) 58.
[12] F. Mahmoudian, F.N. Chianeh and S.M. Sajjadi, J.  Electroanal. Chem, 884 (2021) 115066.
[13] H. Yue, L. Xue and F. Chen, Applied. Catal. B: Environmental, 206 (2017) 683.
[14] C. Zhang, J. Tang, C. Peng, M. Jin, J. Mol. Liq., 23 (2019) 100276.
[15] L. Renuka, K. Anantharaju, Y. Vidya, H. Nagaswarupa, S. Prashantha and H. Nagabhushana, Material. Today. Proce, 4 (2017) 11782.
[16] A. Taufik, A. Albert and R. Saleh, P.A. J. Photochem. Photobiology A. Chem, 344 (2017) 149.
[17] A. Dhara, B. Show, A. Baral, S. Chabri, A. Sinha, N.R. Bandyopadhyay and N. Mukherjee, Solar. Energ, 136 (2016) 327.
[18] L. Li, Z. Huang, X. Fan, Z. Zhang, R. Dou, S. Wen, Y. Chen, Y. Chen and Y. Hu, Electrochim. Acta, 231 (2017) 354.
[19] X. Wang, Y. Zhou, Y. Tuo, Y. Lin, Y. Yan, C. Chen, Y. Li and J. Zhang, Electrochim. Acta, 320 (2019) 134589.
[20] Y. Yang, L. Cui, M. Li and Y. Yao, J. Taiwan. Insti. Chemic. Eng, 102 (2019) 170.
[21] Ü. Alver, A. Tanrıverdi, Ö. Akgül, Synthetic. Metal, 211 (2016) 30.
[22] M. Amiri-Aref, J. B. Raoof and R. Ojani, Colloids.  Surfa. B: Biointerfaces, 109 (2013) 287.
[23] X. Li, H. Xu and W. Yan, Applied.  Surfa. Science, 389 (2016) 278.
[24] F. N. Chianeh and J. B. Parsa, Design,  Chemical. Eng. Resea. Design, 92 (2014) 2740.
[25] Z. Amani-Beni and A. Nezamzadeh-Ejhieh, J. collo. Interfa. scien, 504 (2017) 186.
[26] M. Shoorangiz, M.R. Nikoo, M. Salari, G.R. Rakhshandehroo and M. Sadegh, Process. Safet. Environ. Protection, 132 (2019) 340.
[27] S. Bahrani, Z. Razmi, M. Ghaedi, A. Asfaram and H. Javadian, Ultrasonic. sonochem, 42 (2018) 776.
[28] L. d. M. da Silva, F. Gozzi, I. Sirés, E. Brillas, S. C. De Oliveira and A. M. Junior, Science. Total. Environ, 631 (2018) 1079.
[29] A. Baddouh, G. G. Bessegato, M. M. Rguiti, B. El Ibrahimi, L. Bazzi, M. Hilali and M. V. B. Zanoni, J. Environ. Chem. Eng, 6 (2018) 2041.
[30] R. Kaur, J. P. Kushwaha and N. Singh, Electrochim. Acta, 296 (2019) 856.
[31] G. Bonyadinejad, M. Sarafraz, M. Khosravi, A. Ebrahimi, S.M. Taghavi-Shahri, R. Nateghi and S. Rastaghi, Korean. J. Chemical. Eng, 33(1) (2016) 189.