Influential parameters on the substrate selectivity of laccase and tyrosinase

Document Type : Original Article

Authors

1 Department of Chemistry, Islamic Azad University of Mashhad, Mashhad, The Islamic Republic of Iran

2 Department of Chemistry, Ferdowsi University of Mashhad, Mashhad

3 National Institute for Genetic Engineering and Biotechnology, Tehran, The Islamic Republic of Iran

Abstract

Co-immobilization of several enzymes on the same matrix might enhance the efficiency of bioremediation of water resources. In pursuit of this objective, laccase and tyrosinase are especially important due to their reliance on molecular oxygen during the oxidation of various compounds. Accordingly, in this research, the substrate spectra of a laccase (obtained from Neurospora crassa) and a tyrosinase (obtained from Agaricus bisporus) were studied through analysis of their reactions with different diazo derivatives of phenol, catechol, guaiacol, and aniline, which were made from an identical molecular structure. The results were explained in view of the influential parameters on the substrate selectivity of each enzyme. The outcome of this research indicates that co-immobilization of laccase with a tyrosinase possibly expands the spectrum of the target pollutants, however, it does not guarantee the efficacy of the system against aniline derivatives.

Keywords


[1] K. Haghbeen and D. Schlossser, Laccases in Bioremediation and Waste Valorisation, ed., Springer, (2020) pp. 239.
[2] S. M. Moshtaghioun, M. Dadkhah, K. Bahremandjo, K Haghbeen, S. Aminzadeh and R. L. Legge, Biocatalysis and Biotrans. 35 (2017) 1.
[3] F. Mirazizi, A. Bahrami, K. Haghbeen, H. Shahbani Zahiri, M. Bakavoli and R. L. Legge, J. Enzyme Inhib. Med. Chem. 31 (2015) 1162.
[4] S. M. Moshtaghioun, K. Haghbeen, A. Sahebghadam, R.L. Legge, R. Khoshneviszadeh and S. Farhadi, Anal. Chem. 83 (2011) 4200.
[5] K. Haghbeen and E. W. Tan, Anal. Biochem. 312 (2003) 23.
[6] E. Solem, F. Tuczek, and H. Decker, Angew. Chem. Int. Ed. 55 (2016) 2884.
[7] T. Pillaiyar, M. Manickam and V. Namasivayam, J. Enzyme Inhib. Med. Chem. 32 (2017) 403.
[8] X. Yuan, G. Tian, Y. Zhao, L. Zhao, H. Wang and T. Bun Ng, Molecules, 21 (2016) 203.
[9] E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, and L. Tian, Chem. Rev. 114 (2014) 3659.
[10] S. Y. Seo, V. K. Sharma and N. Sharma, J. Agric. Food Chem. 51(2003) 2837.
[11] S. Halaouli, M. Asther, J-C. Sigoillot, M. Hamdi and A. Lomascolo, J. Appl. Microbiol. 100 (2006) 219.
[12] S. Ba and V. V. Kumar, Critical Reviews in Biotechnology, 22 (2017) 1.
[13] K. Haghbeen and E. W. Tan, J.Org. Chem. 63 (1998) 4503.
[14] K. Haghbeen, S. Shareefi Borojerdi, F. Rastgar Jazii and A. A. Karkhane, Iran. J. Biotechnol, 2 (2004) 189.
[15] W. T. Ismaya, H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers and B. W. Dijkstra, Biochemistry, 50 (2011) 5477.
[16] R. Thomsen and M. H. Christensen, J. Med. Chem, 49 (2006) 3315.
[17] S. Maki-Yonekura and K. Yonekura, Micros. Microanal. 14 (2008) 362.
[18] F. Mirazizi, A. Bahrami, S. Soleimani Asl, A. Zaribafan, K. Haghbeen and S. Aminzadeh, International Journal of Environmental Science and Technology, 15 (2018) 1679.
[19] G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson and P. Nigam, Applied Microbiology and Biotechnology, 56 (2001) 81.
[20] J. Yoon, S. Fujii and E. I. Solomon, Proc. Natl. Acad. Sci. 106 (2009) 6585.
[21] S.M. Jones and E.I. Solomon, Cell. Mol. Life Sci. 72 (2015) 869.
[22] S. Shareefi Borojerdi, K. Haghbeen, A. A. Karkhane, M. Fazli and A. Saboury, Biochemical and Biophysical Research Communications, 314 (2004) 925.
[23] R. C. Weast, Handbook of Chemistry and Physics. 56th ed, Ohio: Cleveland, CRC Press. (1970) pp. 2390.
[24] M. Michalík, A. Vagánek and P. Poliak, Acta. Chimica. Slovaca, 7 (2014) 123.
[25] Y. Matoba, S. Kihara, N. Bando, H. Yoshitsu, M. Sakaguchi, K. Kayama, S. Yanagisawa, T. Ogura and M. Sugiyama, PLOS Biology, 16 (2018) 1.
[26] M. Salehi, M. Kubickib, M. Jafari, M. Galini and F. Soleimaniand, J. Appl. Chem. 13 (2019) 103.