Nanoparticles of SBA-15 synthesized from corn silica as an effective delivery system for valproic acid

Document Type : Original Article

Authors

1 Department of Analytical Chemistry, Mazandaran University, Babolsar, Iran

2 Department of Food Safety and Quality Control, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

Abstract
The aim of this work is to study the behavior of SBA-15 synthesized using amorphous silica extracted from different parts of the corn plant, as drug carriers. The synthesized nano-silica and mesoporous SBA-15 were characterized by x-ray diffraction (XRD), thermogravimetric analysis (TGA), x-ray fluorescence (XRF), scanning electron microscopy (SEM), transition electron microscopy (TEM), Fourier transform infrared (FT-IR), and N2 isotherms. SEM and TEM images showed that SBA-15 is formed by spongy agglomerated nanoparticles revealing the growth of hexagonal shaped domains. The synthesized SBA-15 was modified with cetyltrimethylammonium bromide (CTAB), to increase the carriers' capacity. The SBA-15 and modified SBA-15 show hexagonal order with decreasing pore size from 7.5 nm to 5.5 nm after modification, and surface area from 488 m2/g to 127.75 m2/g in modified SBA-15. Finally, SBA-15 and modified SBA-15 were used as a carrier for valproic acid. The release studies were carried out at λ max = 205 nm by UV-Vis. The results indicated that the release of the drug increased with increasing pH and time. As the drug moves, the digestive tract increases from the stomach to the intestine, and a pH of 6.8 resembling the best results as compared with pH 1.2.

Keywords


[1] S. John. P, A Guide to materials characterization and chemical analysis. WILEY-VCH: NewYork., (1996).
[2] T. Akira, S. Ferdi, Microporous Mesoporous Mater. 77 (2005) 1.
[3] M. Lynne, L. Friedrich, E. George, in Pure and Applied Chemistry, 73 (2001) 381.
[4] W. Hölderich, J. Weitkamp, H. G. Karge, H. Pfeifer, W. Hölderich, Zeolites and Related Microporous Materials: State of the Art, 84 (1994) 1375.
[5] B. Donald W. Zeolite Molecular Sieves: Structure, Chemistry, and Use. John Wiley & Sons New York. 1974.
[6] S. Mohammad, R. Ali, A. Mehdi, M. Ali. Advanced Powder Technology. 30 (2019) 1823.
[7] Kh. Faezeh, R. Bibi marziyeh, A. Seyed Naser, Journal of Applied Chemistry, 16 (2021) 165, in Persian.
[8] M. Ali, R. Mohammad, A. Masoumeh ChemistrySelect. 2 (2017), 4439.
[9] Q. Wei., H. Q. Chen., Z. R. Nie., Y. L. Hao., Y. L. Wang., Q. Y. Li., J. X. Zou., Mater. Lett, 61 (2007) 1469.
[10] M. Randy, R. Maarten B. J,   H. Kristof, V S. Michiel, D, Gert, A. G. J. Jasper, M. Guy, A. Patrick, H. Johan and A. M. Johan, Phys Chem Chem Phys, 13 (2011) 2706.
[11] F. C, A. Chik, B. Md, Advanced Materials Research,  626 (2013) 997.
[13]S. Igor, V. John, W. hia-Wen, L. Victor, J. Am. Chem. Soc, 60 (2008) 1278.
[14] Y, Jin-Wook, L. Chi H, J. Controlled Releas, 112 (2006) 1.
[15] T. Vladimir, Nature reviews. Drug discover, 4 (2005) 145.
[16] P. Haesun,P. Kinam, Pharm. Res, 13 (1996) 1770.
[17] H. Patricia, S. Christian, M. Guillaume, R. Naseem, B. Francisco, V. María, S. Muriel, T. Francis, and F. Gérard, Solid State Sci, 8 (2006) 1459.
[18] Z. Dongyuan, F. Jianglin, H. Qisheng, M. Nicholas, H. F, Glenn, F. C. Braley, D. S. Gallen, Science, 279 (1998) 548.
[19] S. Abdolraouf, G. Nasser, Spectrochimica Acta Part A , 65 (2006), 753.
[20] S. Abdolraouf, G. Nasser, B. Hamidreza, Journal of solution chemistry, 34 (2005), 283.
[21] G. Nasser, G. Mohammad, Ch. Arab, B. G, Journal of Molecular Structure, 930 (2009), 2.
[22] Z. Dongyuan, H. Qisheng, F. Jianglin, F. C. Bradley, and D. S. Galen, J. Am. Chem. Soc, 120 (1998) 6024.
[23] Y. Hui, Z. Qing-Zhou, Microporous Mesoporous Mater, 123 (2009) 298.
[24] I. K. Rukhsan, A. Irshad, P. Kavita, Kh. N.H, A. Sayed H.R. V.Jasra. R, Catal. Commun, 10 (2009) 572.
[25] L. Zhaohua, F. Jay A, W. Jan B, E.M. Donald, Microporous Mesoporous Mater, 83 (2005) 150.
[26] Z. Wei, Q. Xuefeng, Y. Jie, Z. Zikang, Mater. Chem. Phys, 97 (2006) 437.
[27] T. Qunli, X. Yao, W. Dong, S. Yuhan, J. Solid State Chem, 179 (2006) 1513.
[28] G. Liliana, M. P. Juan Carlos,  J. Chem, (2013) 1.
[29] L. Tesy, B. E, M. O. Luisa, M. J, A. Roberto, Optical Materials, 29 (2006) 75.
[30] L. Van Hai, T. Chi Nhan Ha and T. Huy Ha, anoscale Res Lett, 8 (2013) 58.
[31] K. Uruthira, Bioresour. Technol. 73 (2000) 257.
[32] A. Seyed Naser, Gh. Shahram and Ch. Elham, Electrochimica Acta, 88 (2013) 463.
[33] M. Ali, Sh. Shila, Journal of Applied Chemistry (JAC), 9 (2016) 11, in Persian.
[34] K. Danina, D. Aleksandra, M. Maja, M. Anđelija, K. Marco, B. DB, et al. Colloids and surfaces B, Biointerfaces, 1 (2011) 65.
[35] J. Bhakta, Y. Munekage. Int. J. Environ. Res, 5 (2011) 585.
[36] H. B, K. R, S. S, J. Hazard. Mater, 162 (2009) 305.
[37] I. Pilinio, J. Non-Cryst. Solids, 316 (2003) 309.
[38] K. C. T, Eur. Phys. J. B,  38 (1988) 1255.
[39] G. Frank, Phys. Rev. B, 19 (1979) 4292.
[40] W. Jianping, Z. Bingsuo, AEI. Mostafa, J. Mol. Struct, 508 (1999) 87.
[41] P. N, V. C and L. Michel, Thin Solid Films, 310 (1997) 47.
[42] A. Rui M and P. Carlo G, Structural Investigation of Silica Gel Films by Infrared Spectroscopy, 68 (1990) 4225.
[43] C. Gisèle, N. Claude and V. Jacques, J. Chem. Soc., Chem. Commun, (1982) 1413.
[44] M. Michal, L. Marek, J. Solid State Chem, 184 (2011) 1761.
[45] L. Katie Alexandra, Bioscience Horizons : The International Journal of Student Research, 6 (2013).
[46] L. Svenska, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (1898) 1.
[47] H. Yuh-Shan, Scientometrics, 59 (2004) 171.
[48] A. Saeid, J. Colloid Interface Sci, 276 (2004) 47.
[49] R. Ali, B. Samaneh, M. Soheil, R. Nadia, M. Ali.  Heteroatom Chemistry, 28 (2017), 21396.
[50] S. Amir, M. Ali, Progress in Reaction Kinetics and Mechanism, 40 (2015) 383