Thermodynamic study on micellization of tetradecyltrimethylammonium bromide ‎surfactant in mixes methanol/ethanol/propanol +water and Ponceau 4R and Sunset ‎yellow FCF dyes using of conductometric measurement

Document Type : Original Article


Department of Chemistry, Faculty of Basic Sciences, Gilan University, Rasht, Iran


In this work, the micellization behavior of tetradecyltrimethylammonium bromide ‎‎(TTAB) surfactant was investigated in aqueous solvent mixtures of methanol, ethanol ‎and propanol on different mass fractions (10-30%) and aqueous solution of Ponceau 4R ‎and Sunset yellow FCF dyes at concentrations (0.001-0.007mM) based on ‎conductometric technique at T=(298-313)K. The critical micelle concentration (CMC) ‎values and dissociation degrees of TTAB surfactant were determined. The obtained ‎results showed that the CMC value increases with rising of methanol and ethanol mas ‎fractions but the CMC value decreases with rising of propanol mas fractions. Also, the ‎obtained results indicated that the CMC value decreases with concentration increasing of ‎Ponceau 4R and Sunset yellow FCF dyes. In addition, thermodynamic properties such as ‎the Gibbs energy, enthalpy and entropy of micellization were calculated as a function of ‎temperature, dye concentration and alcohol mass fractions. ‎


This is an open access article under the CC-BY-SA 4.0 license.(

[1] Kumar, G., & Chauhan, M. S. (2018). Conductometric investigations of surfactant behavior in aqueous polar aprotic organic additives. Journal of Molecular Liquids249, 710-715.
[2] Li-Sheng Hao, Ni Yang, Guang-Yu Xu, Yun-Feng Jia, Qian Liu, Yan-Qing. (2016) Nan Specific ion effects on the micellization of aqueous mixedcationic/anionic surfactant systems with various counterions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 504, 161–173
[3] Akram, M., Yousuf, S., & Sarwar, T. (2014). Micellization and interfacial behavior of 16-E2-16 in presence of inorganic and organic salt counterions. Colloids and Surfaces A: Physicochemical and Engineering Aspects441, 281-290.
[4] Ramadan, M. S., El-Mallah, N. M., Nabil, G. M., & Abd-Elmenem, S. M. (2019). Hydrophobic effect for anionic dye-cationic surfactant interaction in aqueous and mixed solvent. Journal of Dispersion Science and Technology40(8), 1110-1120.
[5] Abezgauz, L., Kuperkar, K., Hassan, P. A., Ramon, O., Bahadur, P., & Danino, D. (2010). Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. Journal of colloid and interface science342(1), 83-92.
[6] Pal, A., & Chaudhary, S. (2014). Ionic liquids effect on critical micelle concentration of SDS: Conductivity, fluorescence and NMR studies. Fluid Phase Equilibria372, 100-104.
[7] Rub, M. A., Azum, N., Khan, S. B., Marwani, H. M., & Asiri, A. M. (2015). Micellization behavior of amphiphilic drug promazine hydrochloride and sodium dodecyl sulfate mixtures at various temperatures: effect of electrolyte and urea. Journal of Molecular Liquids212, 532-543.
[8] Huang, J., & Ren, Z. H. (2020). Mechanism on micellization of amino sulfonate amphoteric surfactant in aqueous solutions containing different alcohols and its interfacial adsorption. Journal of Molecular Liquids316, 113793.
[9] Sheng, R., Ding, Q. Y., Ren, Z. H., Li, D. N., Fan, S. C., Quan, X. F., ... & Qian, Z. B. (2021). Interfacial and micellization behavior of binary mixture of amino sulfonate amphoteric surfactant and octadecyltrimethyl ammonium bromide: Effect of short chain alcohol and its chain length. Journal of Molecular Liquids334, 116064.
[10] MacDonald, S., MacLennan, S., & Marangoni, D. G. (2020). Calorimetric determination of the thermodynamics of alcohol-surfactant mixed micelle formation: Temperature and concentration effects. Journal of Molecular Liquids302, 112531.
[11] Ren, Z. H., Huang, J., Luo, Y., Zheng, Y. C., Mei, P., Yu, W. C., ... & Li, F. X. (2016). Effect of isopropanol on the micellization of binary mixture containing amino sulfonate amphoteric surfactant in aqueous solution: mixing with sodium dodecylbenzene sulfonate. Journal of the Taiwan Institute of Chemical Engineers65, 482-487.
[12] Dezhampanah, H., Ghalami Choobar, B., Ansari, R., & Firouzi, R. (2013). Coductometric studies of the interaction of acid green 25 with cationic alkyltrimethylammonium bromid surfactants. Progress in Color, Colorants and Coatings7(1), 39-48.
[13] Alam, M. M., Molla, M. R., Rana, S., Rub, M. A., Azum, N., Hoque, M. A., & Kabir, S. E. (2019). Aggregation behavior of cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide in aqueous/urea solution at different temperatures: Experimental and theoretical investigation. Journal of Molecular Liquids285, 766-777.
[14] Kabir-ud-Din, N., Rub, M. A., & Naqvi, A. Z. (2011). Self-association behavior of amitriptyline hydrochloride as a function of temperature and additive (inorganic salts and urea) concentration. Colloid Surf B82, 87-94.
[15] Roik, N. V., Belyakova, L. A., & Dziazko, M. O. (2021). Solubilization of azo dyes by cetyltrimethylammonium bromide micelles as structure control factor at synthesis of ordered mesoporous silicas. Journal of Molecular Liquids328, 115451.
[16] Akhlaghi, N., & Riahi, S. (2019). Salinity effect on the surfactant critical micelle concentration through surface tension measurement. Iranian Journal of Oil and Gas Science and Technology8(4), 50-63.
[17] Hosseinzade Khanamiri, H., Baltzersen Enge, I., Nourani, M., Stensen, J. Å., Torsæter, O., & Hadia, N. (2016). EOR by low salinity water and surfactant at low concentration: impact of injection and in situ brine composition. Energy & Fuels30(4), 2705-2713.
[18] Nadeem, S. M. S., & Ullah, S. M. R. (2020). The study of ionic interactions of monovalent electrolytes in aqueous polyvinyl alcohol and polyacrylamide by conductance method. Ionics26, 2927-2940.
[19] Shekaari, H., Zafarani-Moattar, M. T., Faraji, S., & Mokhtarpour, M. (2018). Thermophysical properties of ionic liquid, 1‑ethyl-3-methylimidazolium ethyl sulfate in organic solvents at dilute region. Journal of Molecular Liquids269, 547-555.
[20] Abbasi Awal, H., Ghasemzadeh, B., & Naseri, A. (2017). Thermodynamic study of the ion-pair complexation equilibria of dye and surfactant by spectral titration and chemometric analysis. Analytical and Bioanalytical Chemistry Research4(2), 307-317.
[21] Hosseinzadeh, R., Maleki, R., Matin, A. A., & Nikkhahi, Y. (2008). Spectrophotometric study of anionic azo-dye light yellow (X6G) interaction with surfactants and its micellar solubilization in cationic surfactant micelles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy69(4), 1183-1187.
[22] Kumar, G., & Chauhan, M. S. (2018). Conductometric investigations of surfactant behavior in aqueous polar aprotic organic additives. Journal of Molecular Liquids249, 710-715.
[23] El-Hammamy, N. H., & El-Araby, H. A. (2016). Electrical conductivity and thermodynamic studies on sodium diethyldithiocarbamate in methanol at different temperatures. Int. J. Electrochem. Sci11, 8709-8721.
[24] Moradian, S., Ghasemi, J. B., & Dezhampanah, H. (2020). Chemometrics-spectroscopic study of the effect of temperature and pre-micellar to post-micellar forms of various surfactants on the dimerization of nickel and copper phthalocyanines. Journal of Molecular Liquids300, 112350.
[25] Dezhampanah, H., & Majidi Naeemi, M. (2019). Investigation of efficiency of iron nanoparticles on the orange peel in removal of sunset yellow dye from aqueous environment. Applied Chemistry14(50), 9-24. (in persion)
[26] Maleki, S., Mennati, A., & Salehi Sadaghiani, A. R. (2011). Determine and compare the cmc point of SDS, Triton x-100 and CTAB surfactants using conductometery method. Applied Chemistry6(20), 47-52. (in persion)