Preparation of Ni-Fe-layered double hydroxide with high surface area as electrocatalyst for water oxidation in neutral media

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, Shahid Madani University of Azerbaijan, Tabriz, Iran

2 Department of Chemistry, Payam Noor University, Tehran, Iran

Abstract

In the present work, nickel-iron layered double hydroxide was prepared by the hydrothermal method. The synthesized electrocatalyst was studied using X-ray diffraction pattern, infrared spectroscopy, nitrogen absorb-desorption, and scanning electron microscopy. The results confirmed the synthesis of a high surface area electrocatalyst. In the next step, the electrocatalytic activity of the synthesized sample was investigated by dropping the sample on the glassy carbon electrode at neutral media. The voltammetric results show a decrease in the onset potential and overpotential of hydrothermal nickel-iron layered double hydroxide in compared to the nickel-iron layered double hydroxide which was synthesized by the co-precipitation method. High surface area, low onset potential, high stability, and repeatability are the prominent features of this electrocatalyst.

Keywords


[1] S. Chu and A. Majumdar, nature, 488 (2012) 294.
[2] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, Nature Commun., 4 (2013) 2390.
[3] M. Nozari-asbmarz, M. Amiri, A. Bezaatpour, S. Arshi, J. Appl. Chem., 16 (2021) 137, in Persian.
[4] Y. Shi and B. Zhang, Chem. Soc. Rev., 45 (2016) 1529.
[5] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra and S. Kundu, Acs Catal., 6 (2016) 8069.
[6] Y. Lee, J. Suntivich, K.J. May, E.E. Perry and Y. Shao-Horn, J. phys. Chem. lett., 3 (2012) 399.
[7] H. Tüysüz, Y.J. Hwang, S.B. Khan, A.M. Asiri and P. Yang, Nano Res., 6 (2013) 47.
[8] L. Trotochaud, J.K. Ranney, K.N. Williams and S.W. Boettcher, J. Am. Chem. Soc., 134 (2012) 17253.
[9] X. Zhao, Y. Zhang, S. Xu, X. Lei and F. Zhang, J. Phys. Chem., 116 (2012) 5288.
[10] L.-J. Zhou, X. Huang, H. Chen, P. Jin, G.-D. Li and X. Zou, Dalton Trans., 44 (2015) 11592.
[11] F. Beigi, F. Manteghi, J. Appl. Chem., 15 (2020) 299, in Persian.
[12] X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G.I. Waterhouse and T. Zhang, Adv. Energy Mater., 9 (2019) 1900881.
[13] Y. Zhang, B. Cui, C. Zhao, H. Lin and J. Li, Phys. Chem. Chem. Phys., 15 (2013) 7363.
[14] F. Song and X. Hu, J. Am. Chem. Soc., 136 (2014) 16481.
[15] C. Dong, X. Yuan, X. Wang, X. Liu, W. Dong, R. Wang, Y. Duan and F. Huang, J. Mater. Chem., 4 (2016) 11292.
[16] R. Li, Y. Liu, H. Li, M. Zhang, Y. Lu, L. Zhang, J. Xiao, F. Boehm and K. Yan, Small Methods, 3 (2019) 1800344.
[17] Y. Yang, L. Dang, M.J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R.J. Hamers and S. Jin, Adv. Energy Mater., 8 (2018) 1703189.
[18] Y. Wang, T. Wang, R. Zhang, Q. Liu, Y. Luo, G. Cui, S. Lu, J. Wang, Y. Ma and X. Sun, Inorg. Chem., 59 (2020) 9491.
[19] X. Yu, J. Liu, W. Yin, T. Wang, L. Quan, Y. Ran, J. Cui, L. Wang and Y. Zhang, Appl. Surf. Sci. 492 (2019) 264.
[20] K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo and L. Sun, Nature Commun., 7 (2016) 11981.
[21] C.C. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters and T.F. Jaramillo, J. Am. Chem. Soc., 137 (2015) 4347.
[22] R. Chen, G. Sun, C. Yang, L. Zhang, J. Miao, H. Tao, H. Yang, J. Chen, P. Chen and B. Liu, Nanoscale Horiz., 1 (2016) 156.
[23] K.S. Joya, Y.F. Joya, H.J.M. de Groot, Adv. Energy Mater., 4 (2014) 1301929.
[24] Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun and X. Duan, Chem. commun., 50 (2014) 6479.
[25] J. Song, M. Leng, X. Fu and J. Liu, J. alloys compd., 543 (2012) 142.
[26] K. Nejati, Z. Rezvani, N. Jarolmasjed and M. Saati, J. Appl. Chem., 9 (2014) 87, in Persian.
[27] S. Sanati and Z. Rezvani, Ultrason. Sonochem., 48 (2018) 199.
[28] F. Khodam, Z. Rezvani and A.R. Amani-Ghadim, J. Ind. Eng. Chem., 21 (2015) 1286.
[29] L. Jafari Foruzin and Z. Rezvani, Ultrason. Sonochem., 64 (2020) 104919.
[30] Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, Chem. Commun., 50 (2014) 6479.
[31] L.-J. Zhou, X. Huang, H. Chen, P. Jin, G.-D. Li, X. Zou, Dalton Trans., 44 (2015) 11592.
[32] S.H. Kim, Y.S. Park, C. Kim, I.Y. Kwon, J. Lee, H. Jin, Y.S. Lee, S.M. Choi, Y. Kim, Energy Reports, 6 (2020) 248.
[33] D.-c. Xia, L. Zhou, S. Qiao, Y. Zhang, D. Tang, J. Liu, H. Huang, Y. Liu, Z. Kang, Mater. Res. Bull., 74 (2016) 441.
[34] L. Jafari Foruzin, Z. Rezvani, B. Habibi, Appl. Clay Sci., 188 (2020) 105511.
[35] L.J. Foruzin, B. Habibi, Z. Rezvani, New J. Chem., 42 (2018) 13963.
[36] L.J. Foruzin, Z. Rezvani, Y.H. Shishavan, B. Habibi, Int. J. Hydrogen Energy, 43 (2018) 150.
[37] R. Chen, G. Sun, C. Yang, L. Zhang, J. Miao, H. Tao, H. Yang, J. Chen, P. Chen, B. Liu, Nanoscale Horizons, 1 (2016) 156.