Synthesize and modification of nano graphene oxide as solid phase adsorbent for separation and preconcentration of Iron(III) and Zinc ions from foods, soil and biological

Document Type : Original Article


Nuclear Fuel Cycle Research Institute, Nuclear Science and Technology Research Institute, Iran Atomic Energy Organization, Tehran, Iran


A simple and selective method for the preconcentration of Fe(III) and Zn ions prior to flame atomic absorption spectrometric (FAAS) determinations using a column packed with nano graphene oxide (GO) as a solid-phase extractant has been presented in this manuscript. The method is based on the sorption of mentioned ions on synthesized GO with use of Methyl-2-(4-methoxy-benzoyl)-3- (4-methoxyphenyl)-3-oxopropanoylcarbamate) as chelating agent. Some effective parameters on the extraction and complex formation were selected and optimized. Under the optimized conditions (pH 9, flow rate 9 mL min−1), metal ions were retained on the column, then quantitatively eluted by 5 mL 3.0 mol L−1 HNO3 solution. The preconcentration factor was calculated as 240. The detection limits for the understudy analyte ions were found in the range of 0.22 ng mL-1 to 0.28 ng mL-1 (for Fe3+ and Zn2+, respectively). The column packed with GO was good enough for metal ions separation in matrixes containing alkali, alkaline earth, transition and heavy metal ions. This method was also used to determine the recovery rate of the studied ions in real samples.


[1] M. Jahangiri and H. Bargahinasab, J. Of Applied Chemistry, 52 (1398) 229, in Persian.
[2] S. G. Ozcan, N. Satiroglu and M. Soylak, Food Chem. Toxicol. 48 (2010) 2401.
[3] M. R. Ganjali, M. R. Pourjavid, L. Haji-agha Babaei and M. Salavati-Niasari, Quim. Nova 27 (2004) 213.
[4] M. Fathi and D. Almasifar, J. Of Applied Chemistry, 43 (1396) 151, in Persian.
[5] P. N. Nomngongo, J. C. Ngila, S. M. Musyoka, T. A. M. Msagati and B. Moodley, Anal. Methods 5 (2013) 3000.
[6] P. Pohl, H. Stecka and P. Jamroz, Anal. Methods 4 (2012) 125.
[7] X. Zhu, H. M. YU, H. Jia, Q. Wu, J. Liu and X. Li, Anal. Methods 5 (2013) 4460.
[8] E. Baher, H. Mighani, S. Ehsani and A. Kamali, J. Of Applied Chemistry, 59 (1400) 185, in Persian.
[9] M. R. Ganjali, M. R. Pourjavid, L. Haji-agha Babaei and M. Salavati-Niasari, Ann. Chim. Rome 94 (2004) 447.
[10] B. Yang, Q. Gong, L. Zhao, H. Sun, N. Ren, J. Qin, J. Xu and H. Yang, Desalination 278 (2011) 65.
[11] Ş. Tokalıoğlu, T. Oymak and Ş. Kartal, Anal. Chim. Acta 511 (2004) 255.
[12] Y. Jiang, Y. Wu, J. Liu, X. Xia and D. Wang, Microchim. Acta 161 (2008) 137.
[13] Ş. Tokalıoğlu, H. Büyükbaş and Ş. Kartal, J. Braz. Chem. Soc. 17 (2006) 98.
[14] J. P. Pancras and B. K. Puri, Anal. Bioanal. Chem. 374 (2002) 1306.
[15] A. A. Ensafi, S. Rabiei, B. Rezaei and A. R. Allafchian, Anal. Methods 5 (2013) 3903.
[16] A. Zarnegarian and D. Elhamifar, J. Of Applied Chemistry, 59 (1400) 85, in Persian.
[17] L. Zhang, T. Huang, M. Zhang, X. Guo and Z. Yuan, J. Hazard. Mater. 157 (2008) 352.
[18] V. A. Lemos, L. S. G. Teixeira, M. A. Bezerra, A. C. S. Costa, J. T. Castro, L. A. M. Cardoso, D. S. Jesus, E. S. Santos, P. X. Baliza and L. N. Santos, Appl. Spectrosc. Rev. 43 (2008) 303.
[19] O. M. Kalfa, Ö. Yalçınkaya and A. R. Türker, J. Hazard. Mater. 166 (2009) 455.
[20] A. K. Geim and K. S. Novoselov, Nature Mater. 6 (2007) 183.
[21] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Commun. 146 (2008) 351.
[22] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and K. Geim, Phys. Rev. Lett. 100 (2008) 016602.
[23] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 41 (2010) 1.
[24] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskil, Z. Sun, A. Slesarev, L. B. Alemany, W, Lu and J. M. Tour, ACS Nano 4 (2010) 4806.
[25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97 (2006) 187401.
[26] M. Ghaedi, K. Niknam, A. Shokrollahi, E. Niknam, H. R. Rajabi and M. Soylak, J. Hazard. Mater. 155 (2008) 121.
[27] F. Marahel, M. Ghaedi, M. Montazerozohori, M. Nejati Biyareh, S. Nasiri Kokhdan and M. Soylak, Food Chem. Toxicol. 49 (2011) 208.
[28] M. Ezoddin, F. Shemirani, K. Abdi, M. Khosravi Saghezchi and M. R. Jamali, J. Hazard. Mater. 178 (2010) 900.
[29] M. Soylak and L. Elci, J. Trace Microprobe Tech. 18 (2000) 397.
[30] M. Ghaedi, M. Montazerozohori and M. Soylak, J. Hazard. Mater. 142 (2007) 368.
[31] M. R. Pourjavid and A. Akbari Sehat, J. Membr. Sep. Technol. 1 (2012) 9.
[32] G. Yang, W. Fen, C. Lei, W. Xiao and H. Sun, J. Hazard. Mater. 162 (2009) 44.
[33] M. Tuzen, K. Parlar and M. Soylak, J. Hazard. Mater. B 121 (2005) 79.
[34] M. Soylak, İ. Narin, L. Elçi and M. Doğan, Fresenius Environ. Bull. 8 (1999) 14.
[35] N. Burham, Desalination 249 (2009) 1199.
[36] S. Dahane and M. D. Gil Garcia, J. Chromatogr. A 1297 (2013) 17.
[37] B. T. Zhang and X. Zheng, Anal. Chem. Acta 784 (2007) 1.
[38] C. Duran, A. Gundogdu, V. N. Bulut, M. Soylak, L. Elci, H. Basri Sentürk and M. Tüfekci, J. Hazard. Mater. 146 (2007) 347.
[39] F. Marahel, M. Ghaedi, A. Shokrollahi, M. Montazerozohori and S. Davoodi, Chemosphere 74 (2009) 583.
[40] M. Ghaedi, K. Niknam, K. Taheri, H. Hossainian and M. Soylak, Food Chem. Toxicol. 48 (2010) 891.
[41] S. Vellaichamy and K. Palanivelu, J. Hazard. Mater. 185 (2011) 1131.