Development of copper electrochemical sensor using D-penicillamine functionalized graphene oxide modified electrode

Document Type : Original Article

Authors

1 Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia, Iran

2 Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia, Iran. Nanotechnology Research Center, Urmia University, Urmia, Iran.

Abstract

In this research, graphene oxide (GO) was functionalized with D-penicillamine (DPA) and used to develop an electrochemical sensor for Cu(II) cation. For the successful synthesis of D-penicillamine-functionalized graphene oxide (DPA-GO), Fourier Transfer Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), X-ray diffraction pattern (XRD), and Transmission Electron Microscopy (TEM) are used. DPA-GO modified glassy carbon electrode (DPA-GO / GCE) was prepared and its electrochemical behavior was studied in the presence of Cu(II) cations by cyclic voltammetry, and the results showed the better performance of the DPA-GO-modified electrode compared to unmodified and GO-modified electrode, which related to GO nanostructure and complexing ability of sulfur, nitrogen, and oxygen-containing functional groups in the DPA structure. The prepared sensor was used for the selective and sensitive measurement of Cu(II) cations by square-wave anodic stripping voltammetry (SW-ASV) and the factors affecting the sensor performance were investigated and optimum conditions for sensor operation were determined. Under the optimal conditions, the prepared electrode has a linear response in the range of 1 pM to 0.1 µM and its detection limit was 0.31 pM. The proposed sensor was used satisfactorily to measure copper cation in real water samples with suitable reproducibility and stability.

Keywords


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Faraji, M., Yamini, Y., & Shariati, S. (2009). Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. Journal of hazardous materials166(2-3), 1383-1388.
[2] Pinto, J. J., Moreno, C., & García-Vargas, M. (2002). A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Analytical and bioanalytical chemistry373, 844-848.
[3] Salinas-Castillo, A., Ariza-Avidad, M., Pritz, C., Camprubí-Robles, M., Fernández, B., Ruedas-Rama, M. J. & Capitan-Vallvey, L. F. (2013). Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chemical Communications49(11), 1103-1105.
[4] Crisponi, G., Nurchi, V. M., Fanni, D., Gerosa, C., Nemolato, S., & Faa, G. (2010). Copper-related diseases: from chemistry to molecular pathology. Coordination chemistry reviews254(7-8), 876-889.
[5] Zhao, H., Xue, C., Nan, T., Tan, G., Li, Z., Li, Q. X. & Wang, B. (2010). Detection of copper ions using microcantilever immunosensors and enzyme-linked immunosorbent assay. Analytica Chimica Acta676(1-2), 81-86.
[6] Samuele, A., Mangiagalli, A., Armentero, M. T., Fancellu, R., Bazzini, E., Vairetti, M. & Blandini, F. (2005). Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease1741(3), 325-330.
[7] Ferreira, S. L., Lemos, V. A., Moreira, B. C., Costa, A. S., & Santelli, R. E. (2000). An on-line continuous flow system for copper enrichment and determination by flame atomic absorption spectroscopy. Analytica chimica acta403(1-2), 259-264.
[8] Karadjov, M., Velitchkova, N., Veleva, O., Velichkov, S., Markov, P., & Daskalova, N. (2016). Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). Spectrochimica Acta Part B: Atomic Spectroscopy119, 76-82.
[9] Gotoh, S., Teshima, N., Sakai, T., Ida, K., & Ura, N. (2003). Flow-injection simultaneous determination of copper and iron in patient sera with 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino) aniline and its application to disease diagnosis. Analytica chimica acta499(1-2), 91-98.
[10] Long, Y. F., Huang, C. Z., He, R. X., & Li, Y. F. (2008). Selectively light scattering spectrometric detection of copper (II) based on a new synthesized oxamide ligand. Analytica chimica acta624(1), 128-132.
[11] Pinto, J. J., Moreno, C., & García-Vargas, M. (2002). A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Analytical and bioanalytical chemistry373, 844-848.
[12] Zhu, Y., Inagaki, K., & Chiba, K. (2009). Determination of Fe, Cu, Ni, and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column. Journal of Analytical Atomic Spectrometry24(9), 1179-1183.
[13] Salinas-Castillo, A., Ariza-Avidad, M., Pritz, C., Camprubí-Robles, M., Fernández, B., Ruedas-Rama, M. J. & Capitan-Vallvey, L. F. (2013). Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chemical Communications49(11), 1103-1105.
[14] Jakmunee, J., & Junsomboon, J. (2008). Determination of cadmium, lead, copper and zinc in the acetic acid extract of glazed ceramic surfaces by anodic stripping voltammetric method. Talanta77(1), 172-175.
[15] Gupta, V. K., Singh, L. P., Singh, R., Upadhyay, N., Kaur, S. P., & Sethi, B. (2012). A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis (3-thioallophanate) in PVC matrix. Journal of Molecular Liquids174, 11-16.
[16] Ostojić, J., Herenda, S., Bešić, Z., Miloš, M., & Galić, B. (2017). Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules, 22(7), 1120.
[17] Shahrokhian, S., & Rastgar, S. (2012). Construction of an electrochemical sensor based on the electrodeposition of Au–Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst137(11), 2706-2715.
[18] Shervedani, R. K., & Mozaffari, S. A. (2006). Copper (II) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde. Analytical chemistry78(14), 4957-4963.
[19] Wu, Z., Liao, J., Xiao, J., Liu, J., Yang, J., Zhou, X., & Xin, M. (2013). Amino‐Containing Ultrafine Organosilica‐Nanoparticle‐Modified Au Electrode for the Determination of Cu (II) Ions. Electroanalysis25(11), 2557-2566.
[20] Si, Y., Liu, J., Wang, A., Niu, S., & Wan, J. (2015). A chitosan-graphene electrochemical sensor for the determination of copper (II). Instrumentation Science & Technology43(3), 357-368.
[21] Sharifi, K., & Es' haghi, M. (2020). Synthesis of nanocomposite based on molecularly imprinted polymer electrode modified by gold nanoparticles and graphene oxide to prepare the diazinon-sensitive electrochemical sensor. Applied Chemistry1399(Special Letter to the Fourth Conference on Applied Chemistry in Iran, August 1998), 39-49. (in persion)
[22] Asadpour-Zeynali, K., & Bigdeloo, K. (2020). Preparation of modified glass carbon electrode with graphene/chitosan quantum dots and its application in electrocatalytic measurements of acetaminophen. Applied Chemistry1399(Special Letter to the Fourth Conference on Applied Chemistry in Iran, August 1998), 68-79. (in persion)
[23] Kamyabi, M., Niazi, S., & Asgari, Z. (2019). Electrochemical insulin sensor based on complex tris (1-10, phenanthroline) cobalt (II) and multiwalled carbon nanotubes modified glassy carbon electrode. Applied Chemistry14(51), 223-238. (in persion)
[24] Shabani, R., Mozaffari, S. A., Husain, S. W., & SABER, T. M. (2009). Selective nanosensing of copper (II) ion using L-Lysine functionalized gold cysteamine self-assembled monolayer. Iranian Journal of Science & Technology, Transaction A, 33, 335-347.
[25] Saldaña, J., Gallay, P., Gutierrez, S., Eguílaz, M., & Rivas, G. (2020). Multi-walled carbon nanotubes functionalized with bathocuproinedisulfonic acid: analytical applications for the quantification of Cu (II). Analytical and bioanalytical chemistry412, 5089-5096.
[26] Wang, Y., Zhao, S., Li, M., Li, W., Zhao, Y., Qi, J., & Cui, X. (2017). Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper (II). Journal of Electroanalytical Chemistry797, 113-120.
[27] Wu, Y. L., Bai, F., Yang, T., Chen, J. H., Su, L., & Hou, X. M. (2017). Selective determination of copper (II) based on aluminum silicon carbide nanoparticles modified glassy carbon electrode by square wave stripping voltammetry. Electroanalysis29(10), 2224-2231.
[28] Ahour, F., & Taheri, M. (2018). Anodic stripping voltammetric determination of copper (II) ions at a graphene quantum dot-modified pencil graphite electrode. Journal of the Iranian Chemical Society15, 343-350. [29] Taheri, M., Ahour, F., & Keshipour, S. (2018). Sensitive and selective determination of Cu2+ at d-penicillamine functionalized nano-cellulose modified pencil graphite electrode. Journal of Physics and Chemistry of Solids117, 180-187.
[30] Gad, E. S., Ali, T. A., Elsayed, A. A., Mohamed, G. G., & El-Bary, H. A. (2020). Selective Determination of Copper (II) Based on Cu (II)-Metal-Organic Framework in different Water Samples. Int. J. Electrochem. Sci15, 11904-11919.
[31] Mei, C. J., Yusof, N. A., & Alang Ahmad, S. A. (2021). Electrochemical determination of lead & copper ions using thiolated calix [4] arene-modified screen-printed carbon electrode. Chemosensors9(7), 157.
[32] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: past, present and future. Progress in materials science56(8), 1178-1271.
[33] Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society80(6), 1339-1339.
[34] Niu, L. M., Luo, H. Q., Li, N. B., & Song, L. (2007). Electrochemical detection of copper (II) at a gold electrode modified with a self-assembled monolayer of penicillamine. Journal of Analytical Chemistry62, 470-474.
[35] Hadidi, M., Ahour, F., & Keshipour, S. (2022). Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. Journal of the Iranian Chemical Society19(4), 1179-1189.
[36] Keshipour, S., Kulaei, M., & Ahour, F. (2019). Graphene oxide nano-sheets-supported Co (II)-d-penicillamine as a green and highly selective catalyst for epoxidation of styrene. Iranian Journal of Science and Technology, Transactions A: Science43, 85-94.
[37] Babazadeh, S., Moghaddam, P. A., Keshipour, S., & Mollazade, K. (2020). Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum dot/Au (III) chemosensor. Scientific Reports10(1), 14327.
[38] Al-Azmi, A., & Keshipour, S. (2020). Dimaval as an efficient ligand for binding Ru (III) on cross-linked chitosan aerogel: Synthesis, characterisation and catalytic investigation. Cellulose27, 895-904.
[39] Keshipour, S., & Mohammad-Alizadeh, S. (2021). Nickel phthalocyanine@ graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Scientific Reports11(1), 16148.
[40] Anson, F. C. (1966). Innovations in the study of adsorbed reactants by chronocoulometry. Analytical chemistry38(1), 54-57.
[41] García-Miranda Ferrari, A., Foster, C. W., Kelly, P. J., Brownson, D. A., & Banks, C. E. (2018). Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors8(2), 53.
[42] B Bagherzadeh, M., Pirmoradian, M., & Riahi, F. (2014). Electrochemical detection of Pb and Cu by using DTPA functionalized magnetic nanoparticles. Electrochimica Acta115, 573-580.
[43] Maddipatla, D., Saeed, T. S., Narakathu, B. B., Obare, S. O., & Atashbar, M. Z. (2020). Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sensors Journal20(21), 12582-12591.
[44] Saldaña, J., Gallay, P., Gutierrez, S., Eguílaz, M., & Rivas, G. (2020). Multi-walled carbon nanotubes functionalized with bathocuproinedisulfonic acid: analytical applications for the quantification of Cu (II). Analytical and bioanalytical chemistry412, 5089-5096.
[45] Mei, C. J., Yusof, N. A., & Alang Ahmad, S. A. (2021). Electrochemical determination of lead & copper ions using thiolated calix [4] arene-modified screen-printed carbon electrode. Chemosensors9(7), 157.
[46] Maddipatla, D., Saeed, T. S., Narakathu, B. B., Obare, S. O., & Atashbar, M. Z. (2020). Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sensors Journal20(21), 12582-12591.
[47] Hassine, C. B. A., Bourourou, M., Barhoumi, H., & Jaffrezic, N. (2019). Copper (II) electrochemical sensor based on aluminon as chelating ionophore. IEEE Sensors Journal19(19), 8605-8611.
[48] Xiong, W., Zhang, P., Liu, S., Lv, Y., & Zhang, D. (2021). Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu (II) and Hg (II). Diamond and Related Materials111, 108170.
[49] Bagheri, A., & Hassani Marand, M. (2020). Voltammetric and Potentiometric Determination of Cu 2+ Using an Overoxidized Polypyrrole Based Electrochemical Sensor. Russian Journal of Electrochemistry56, 453-461.