[1] Iwatani, S., & Yamamoto, N. (2019). Functional food products in Japan: A review. Food Sci. Hum. Wellness 8: 96–101.
[2] Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of food engineering, 56(2-3), 181-188.
[3] Rostami-Vartooni, A., Moradi-Saadatmand, A., Bagherzadeh, M., & Mahdavi, M. (2019). Green synthesis of Ag/Fe3O4/ZrO2 nanocomposite using aqueous Centaurea cyanus flower extract and its catalytic application for reduction of organic pollutants. Iranian Journal of Catalysis, 9(1), 27-35.
[4] Torabi, F. Education and Household Labor in Urban Areas of Iran. Journal of Divorce and Remarriage, 54, 112-125.
[5] Yildirim-Elikoglu, S., & Erdem, Y. K. (2018). Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International, 34(7), 665-697.
[6] Cutrim, C. S., & Cortez, M. A. S. (2018). A review on polyphenols: Classification, beneficial effects and their application in dairy products. International Journal of Dairy Technology, 71(3), 564-578.
[7] Ma, Y., Feng, Y., Song, L., Li, M., Dai, H., Bao, H., & Liang, Y. (2021). Green tea polyphenols supplementation alters immunometabolism and oxidative stress in dairy cows with hyperketonemia. Anim Nutr 7: 206–215.
[8] Mao, X., Gu, C., Chen, D., Yu, B., & He, J. (2017). Oxidative stress-induced diseases and tea polyphenols. Oncotarget, 8(46), 81649.
[9] Hellwig, V., & Gasser, J. (2020). Polyphenols from waste streams of food industry: valorisation of blanch water from marzipan production. Phytochemistry Reviews, 19(6), 1539-1546.
[10] Milinčić, D. D., Popović, D. A., Lević, S. M., Kostić, A. Ž., Tešić, Ž. L., Nedović, V. A., & Pešić, M. B. (2019). Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials, 9(11), 1629.
[11] Aristizabal-Henao, J. J., Ahmadireskety, A., Griffin, E. K., Da Silva, B. F., & Bowden, J. A. (2020). Lipidomics and environmental toxicology: Recent trends. Current Opinion in Environmental Science & Health, 15, 26-31.
[12] Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. Organic pollutants monitoring, risk and treatment, 7, 167-194.
[13] Dadar, M., Fakhri, Y., Shahali, Y., & Khaneghah, A. M. (2020). Contamination of milk and dairy products by Brucella species: A global systematic review and meta-analysis. Food Research International, 128, 108775.
[14] Nair, C. I., Jayachandran, K., & Shashidhar, S. (2008). Biodegradation of phenol. African journal of biotechnology, 7(25).
[15] Asses, N., Ayed, L., Bouallagui, H., Sayadi, S., & Hamdi, M. (2009). Biodegradation of different molecular-mass polyphenols derived from olive mill wastewaters by Geotrichum candidum. International Biodeterioration & Biodegradation, 63(4), 407-413.
[16] Beltran, F. J., Rivas, F. J., & Gimeno, O. (2005). Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(9), 973-984.
[17] Ganzenko, O., Huguenot, D., Van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2014). Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environmental Science and Pollution Research, 21, 8493-8524.
[18] Firdaous, L., Fertin, B., Khelissa, O., Dhainaut, M., Nedjar, N., Chataigné, G., ... & Dhulster, P. (2017). Adsorptive removal of polyphenols from an alfalfa white proteins concentrate: Adsorbent screening, adsorption kinetics and equilibrium study. Separation and purification technology, 178, 29-39.
[19] Wolf, M. O. (2006). Recent advances in conjugated transition metal-containing polymers and materials. Journal of Inorganic and Organometallic Polymers and Materials, 16, 189-199.
[20] Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic metals, 177, 1-47.
[21] Shahabuddin, S., Sarih, N. M., Afzal Kamboh, M., Rashidi Nodeh, H., & Mohamad, S. (2016). Synthesis of polyaniline-coated graphene oxide@ SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers, 8(9), 305.
[22] Thomas, B., & Alexander, L. K. (2019). Nanoreactor based enhancement of photocatalysis with Co0. 7Zn0. 3Fe2O4@ SrTiO3 core-shell nanocomposites. Journal of Alloys and Compounds, 788, 257-266.
[23] Nodeh, H. R., & Sereshti, H. (2016). Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC advances, 6(92), 89953-89965.
[24] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 19(6-7), 669-675.