Design and Fabrication of Infrared Detector Based on Polyaniline/Silver Nanowire Nanocomposite

Document Type : Original Article

Authors

1 Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

2 Department of Mechanical Engineering, Technical and Vocational Faculty, Technical and Vocational University, Tehran, Iran

Abstract

The aim of this research is the fabrication of infrared detector for using in different fields. For this purpose, polyaniline/silver nanowire nanocomposite was synthesized by hard chemical template method. The structural characteristics of the prepared nanocomposite were examined by a scanning electron microscope (SEM) and X-ray diffraction (EDS) spectroscopy. The results of the microscopic analysis showed that the synthetic polyaniline film had a non-uniform porosities with the approximate size distribution in diameter of 270 nm and had contain 1.28 (wt.%) of silver nanowires in the size of 80-100 nm. The results of evaluating the performance of an infrared detector based on the polyaniline/silver nanowire nanocomposite showed that with infrared light, the detector current increases under constant orientation (bias) and returns to its original state when the radiation is stopped. This increase was 4.8%, which indicates an improvement in comparison with prior similar samples. The response and the recovery time were obtained about 30 and 8 s, respectively.

Keywords


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

]1[ Karim, A., & Andersson, J. Y. (2013). Infrared detectors: Advances, challenges and new technologies. IOP Conference Series: Materials Science and Engineering, 51(1), 012001.
]2[ Gehrz, R. D., Becklin, E. E., De Pater, I., Lester, D. F., Roellig, T. L., & Woodward, C. E. (2009). A new window on the cosmos: The stratospheric observatory for infrared astronomy (SOFIA). Advances in Space Research44(4), 413-432.
]3[ Rogalski, A. (2002). Infrared detectors: an overview. Infrared physics & technology43(3), 187-210.
]4[ Aleks, M., Jagtap, C., Kadam, V., Kolev, G., Denishev, K., & Pathan, H. (2021). An overview of microelectronic infrared pyroelectric detector. Engineered Science16, 82-89.
]5[ Verma, V. B., Korzh, B., Walter, A. B., Lita, A. E., Briggs, R. M., Colangelo, M., & Shaw, M. D. (2021). Single-photon detection in the mid-infrared up to 10 μ­m wavelength using tungsten silicide superconducting nanowire detectors. APL Photonics6(5), 056101.
]6[ Rogalski, A. (2011). Recent progress in infrared detector technologies. Infrared Physics & Technology54(3), 136-154.
]7 [ Bang, D., Chang, Y. W., Park, J., Lee, J., Yoo, K. H., Huh, Y. M., & Haam, S. (2012). Fabrication of a near-infrared sensor using a polyaniline conducting polymer thin film. Thin Solid Films520(22), 6818-6821.
]8[ Maimon, S., & Wicks, G. W. (2006). n­­B­n detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters89(15), 151109.
]9[ Bhan, R. K., & Dhar, V. (2019). Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electronics Review27(2), 174-193.
]10[ Chen, S., You, L., Zhang, W., Yang, X., Li, H., Zhang, L., & Xie, X. (2015). Dark counts of superconducting nanowire single-photon detector under illumination. Optics express23(8), 10786-10793.
]11[ Wan, M. (2008). A template‐free method towards conducting polymer nanostructures. Advanced Materials20(15), 2926-2932.
]12 [You, L., Wu, J., Xu, Y., Hou, X., Fang, W., Li, H., & Xie, X. (2017). Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. Optics Express25(25), 31221-31229.
]13 [Adhikary, S., & Chakrabarti, S. (2018). Quaternary capped in (Ga) As/GaAs quantum dot infrared photodetectors (Vol. 23). Singapore: Springer.
]14 [Meng, Y., Zou, K., Hu, N., Xu, L., Lan, X., Steinhauer, S., & Hu, X. (2022). Fractal superconducting nanowires detect infrared single photons with 84% system detection efficiency, 1.02 polarization sensitivity, and 20.8 ps timing resolution. Acs Photonics9(5), 1547-1553.
]15[ Rogalski, A. (2003). Infrared detectors: status and trends. Progress in quantum electronics27(2), 59-210.
]16[ Lijing, Y., Libin, T., Wenyun, Y., & Qun, H. (2021). Research progress of uncooled infrared detectors. Infrared and Laser Engineering50(1), 20211013-1.
]17 [Canedy, C. L., Bewley, W. W., Merritt, C. D., Kim, C. S., Kim, M., Warren, M. V., & Meyer, J. R. (2019). Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm. Optics express27(3), 3771-3781.
]18[ Yadav, P. K., Ajitha, B., Reddy, Y. A. K., & Sreedhar, A. (2021). Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere279, 130473.
]19 [Steenbergen, E. H., Morath, C. P., Maestas, D., Jenkins, G. D., & Logan, J. V. (2019). Comparing II-VI and III-V infrared detectors for space applications. Infrared Technology and Applications XLV, 11002, 299-307.
]20 [Boone, N., Zhu, C., Smith, C., Todd, I., & Willmott, J. R. (2018). Thermal near infrared monitoring system for electron beam melting with emissivity tracking. Additive Manufacturing22, 601-605.
]21[ Jackowska, K., Bieguński, A. T., & Tagowska, M. (2008). Hard template synthesis of conducting polymers: a route to achieve nanostructures. Journal of Solid State Electrochemistry12, 437-443.
]22[ Nambiar, S., & Yeow, J. T. (2011). Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics26(5), 1825-1832.
]23[Hui, Y., & Rinaldi, M. (2013). High performance NEMS resonant infrared detector based on an aluminum nitride nano-plate resonator.
]24[ Aleksandrova, M. (2022). Characterization of infrared detector with lead-free perovskite and core–shell quantum dots on silicon substrate. Journal of Materials Science: Materials in Electronics33(31), 23900-23909.
]25[ Mazzara, F., Patella, B., D’Agostino, C., Bruno, M. G., Carbone, S., Lopresti, F., & Inguanta, R. (2021). PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors9(7), 169.
]26[ Kinch, M. A. (2000). Fundamental physics of infrared detector materials. Journal of Electronic Materials29, 809-817.
]27 [Astaf'ev, O., Kavano, I., Komiyama, S., Gavrilenko, V. I., & Erofeeva, I. V. (2002). Response time of the quantum well Hall effect detector in far IR radiation region. Izvestiya Akademii Nauk. Rossijskaya Akademiya Nauk. Seriya Fizicheskaya66(2), 243-246.
]28[ Larciprete, M. C., Albertoni, A., Belardini, A., Leahu, G., Li Voti, R., Mura, F., & Nasibulin, A. G. (2012). Infrared properties of randomly oriented silver nanowires. Journal of Applied Physics112(8), 083503.
]29[ Jones, A. C., Olmon, R. L., Skrabalak, S. E., Wiley, B. J., Xia, Y. N., & Raschke, M. B. (2009). Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano letters9(7), 2553-2558.
]30 [Ansari-asl, Z., Neisi, Z., Sedaghat, T., & Nobakht, V. (2019). Synthesis, characterization, and electrochemical properties of polyaniline/Co (II) metal-organic framework composites. Applied Chemistry14(51), 251-266. (in persian)
]31 [Xiang, H., Xin, C., Hu, Z., Aigouy, L., Chen, Z., & Yuan, X. (2021). Long-term stable near-infrared–short-wave-infrared photodetector driven by the photothermal effect of polypyrrole nanostructures. ACS Applied Materials & Interfaces13(38), 45957-45965.
]32 [Nosrati, R., (2019), Design and fabrication of infrared detector baced on multiwall carbon nanotubes, Master of Science (M.Sc.) Thesis, The Tbriz University)
]33 [Guan, H., Li, W., Yang, R., Su, Y., & Li, H. (2022). Microstructured PVDF film with improved performance as flexible infrared sensor. Sensors22(7), 2730.
]34 [Amiri, M., & Alizadeh, N. (2020). Highly photosensitive near infrared photodetector based on polypyrrole nanoparticle incorporated with CdS quantum dots. Materials Science in Semiconductor Processing111, 104964.