Electrochemical oxidation of clonazepam drug in the presence of arylsulfinic acid in aqueous solutions: A green method for synthesis new sulfonamide derivatives

Document Type : Original Article

Authors

Department of Chemistry,Faculty of Sciences, Payame Noor University (PNU), Tehran, Iran

Abstract

The electrochemical oxidation of clonazepam (CLNP) has been studied in presence of some aryl sulfinic acids as nucleophiles in aqueous buffered solution by means of cyclic voltammetry, and controlled- potential coulometry. Voltammetric studies of electrochemical behavior of clonazepam have also been investigated in different pH values (pH 1.0 to 10.0) in absence and presence of toluenesulfinic acid (1a) as well as benzenesulfinic acid (1b). The results indicated that peak current and peak potential depends on the level of pH. Finally, the synthetizing new sulfonamide derivatives was conducted through constant current electrolysis of clonazepam in presence of arylsulfinic acids at carbon rod electrodes, employing a green electrochemical protocol. CLNP which has cathodically produced hydroxylamine species is oxidized at the anode to generate nitroso species, participate in reaction with the arylsulfinic acids, converts it to the corresponding new sulfonamide derivatives. The new products have been characterized by IR, MS, 1H NMR and 13C NMR methods.

Keywords


[1] B. Tozkoparan, E. Kupeli, E. Yesilada, and M. Ertan, Bioorg. Med. Chem., 15 (2007) 1808.
[2] S. H. Hwang, K. M. Wagner, C. Morisseau, J. Y. Liu, H. Dong, A. T. Wecksler, and B. D. Hammock, J. Med. Chem., 54 (2011) 3037.
[3] M. S. Al-Said, M. M. Ghorab, and Y. M. Nissan, J. Chem Cent., 6 (2012) 1.
[4]K. V. Kudryavtsev, M. L. Bentley, and D. G. McCafferty, Bioorg. Med. Chem., 17 (2009) 2886.
[5] B. Guruswamy, R. K. Arul, M. V. S. R. K. Chaitan, and S. S. P. K. Darsi, Eur. J. Chem., 4 (2013) 329.
[6] A. Cohen, M. D. Crozet, P. Rathelot, N. Azas, and P. Vanelle, Molecules, 18 (2012) 97.
[7] A. R. Usera, P. Dolan, T. W. Kensler, and G. H. Posner, Bioorg. Med. Chem., 17 (2009) 5627.
[8] Y. T. Chen, R. Lira, E. Hansell, J. H. McKerrow, and W. R. Roush, Bioorg. Med. Chem. Lett., 18 (2008) 5860.
[9] B. R. Shenai, B. J. Lee, A. Alvarez-Hernandez, P. Y. Chong, C. D. Emal, R. J. Neitz, W. R.[Roush, and P. J. Rosenthal, Antimicrob. Agents Chemother, 47 (2003) 154.
[10] P. J. Lee, J. B. Bhonsle, H. W. Gaona, D. P. Huddler, T. N. Heady, M. Kreishman-Deitrick, A. Bhattacharjee, W. F. McCalmont, L. Gerena, and M. Lopez-Sanchez, J. Med. Chem., 52 (2009) 952.
[11] J. Y. Hwang, W. Huang, L. A. Arnold, R. Huang, R. R. Attia, M. Connelly, J. Wichterman, F. Zhu, I. Augustinaite, and C. P. Austin, J. Biol. Chem., 286 (2011) 11895.
[12] M. E. Welker and G. Kulik, Bioorg. Med. Chem., 21 (2013) 4063.
[13] H. Chen, T. Tsalkova, O. G. Chepurny, F. C.Mei, G. G. Holz, X. Cheng, and J. Zhou, J. Med. Chem., 56 (2013) 952.
[14] D. Shaw, J. Best, K. Dinnell, A. Nadin, M. Shearman, C. Pattison, J. Peachey, M. Reilly, B. Williams, and J. Wrigley, Bioorg. Med. Chem. Lett., 16 (2006) 3073.
[15] J.B. Grimm, M.H. Katcher, D.J. Witter, A.B. Northrup, J. Org. Chem. 72 (2007) 8135.
[16] N. Ozbek, H. Katircioglu, N. Karacan, T. Baykal, Bio. Med. Chem., 15 (2007) 5105.
[17] X.H. Deng, N.S. Mani, Green Chem., 8 (2006) 835.
[18] A.K. Gadad, C.S. Mahajanshetti, S. Nimbalkar, A. Raichurkar, Eur. J. Med. Chem., 35 (2000) 853.
[19] R. Davis, Synth. Commun., 17 (1987) 823.
[20] K. Peseke and U. Schonhusen, J. Prakt. Chem., 332 (1990) 679.
[21] J. M. Blanco, O. Caamano, F. Fernandez, G. Gomez, and C. Lopez, Tetrahedron: Asymmetry, 3 (1992) 749.
[22] M. Y. Chang, M. H. Wu, C. K. Chan, and S. Y. Lin, Tetrahedron Lett., 54 (2013) 6971.
[23] B. M. Graybill, J. Org. Chem., 32 (1967) 2931.
[24] N. Margraf and G. Manolikakes, J. Org. Chem., 80 (2015) 2582.
[25] D. Kumar, V. Arun, M. Pilania, and K. C. Shekar, Synlett., 24 (2013) 831.
[26] V. G. Pandya and S. B. Mhaske, Org. Lett., 16 (2014) 3836.
[27] Y. Xi, B. Dong, E. J.McClain,Q.Wang, T. L. Gregg, N. G. Akhmedov, J. L. Petersen, and X. Shi, Angew. Chem. Int. Ed., 53 (2014) 4657.
[28] S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi, and R. Bernini, J. Org. Chem., 69 (2004) 5608.
[29] B. Bandgar, S. V. Bettigeri, and J. Phopase, Org. Lett., 6 (2004) 2105.
[30] H. Beiginejad, D. Nematollahi, S. Khazalpour, J. Of Applied Chemistry, 48 (1397) 75.
[31] B. Habibi, Z. Aiazi, J. Rostami, J. Of Applied Chemistry, 46 (1397) 9.
[32]     E. Tammari, Sh. Lotfi, J. Elec. Chem., 766 (2016) 162.
[33] E. Salahifar and D. Nematollahi, New J. Chem., 39 (2015) 3852.
[34] C. Costentin, Chem. Rev. 108 (2008) 2145.
[35] Sh. Lotfi, J. Of Applied Chemistry, 59 (1400) 99.
[36]  J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev.108 (2008) 2265.
[37] Sh. Lotfi, E. Tammari, A. Nezhadali, Mat. Sci.e and Eng. C, 76 (2017) 153.
[38] E. Tammari, A. Nezhadali, Sh. Lotfi, Electroanalysis, 27 (2015) 1693.
[39] H. Beiginejad, D.Nematollahi, Mo. Noroozi& Sh. Lotfi, J. the Iranian Chem. Society,12 (2014) 325.
[40] T. Shono, Electroorganic Synthesis; Academic Press: San Diego, 1991.
[41] E. Tammari, M. Bashiri, F. Ganjeizadeh Rohani, J. Of Applied Chemistry, 51 (1398) 177 in Persian.
[42] B. Habibi, M. Jahanbakhshi,  Electrochimica Acta, 118( 2014) 10.
[43] T.R. Browne, Am. J. Hosp. Pharm. 35 (1978), 1048.
[44] R. M. Azzam, L. J. Notarianni, and H. M. Ali, J. Chromatogr, B. 708 (1998) 304.
[45] S.G. Jezequel, J. Mol. Catal, B: Enzymatic., 5 (1998) 371.
[46] M. Munakata, and S. Tsuchiya, Epilepsia. 49 (2008) 1803.
[47] J.M. Zen, J.J. Jou, A.S. Kumar, Anal. Chim. Acta, 396 (1999) 39.
[48] J.C. Chen, J.L. Shih, C.H. Liu, M.Y. Kuo, J.M. Zen, Anal. Chem., 78 (2006) 3752.
[49] K.C. Honeychurch, J. Brooks, J.P. Hart, Talanta, 147 (2016) 510.
[50] Sh. Lotfi, H. Veisi,  Mater. Sci. Eng. C, 103 (2019) 109754.