Investigation of the electrochemical behavior of curcumin in a mixed solution of water and ethanol by means of cyclic voltammetry and quantum chemical calculations

Document Type : Original Article


Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran


In the present work, a computational analysis of the chemical structure of curcumin, the most important component of turmeric, is carried out by means of state-of-the-art methods of calculations. High-level ab initio calculations (G4) along with reliable methods of density functional theory (DFT) have been used to study
the enol-diketo tautomerism of curcumin. The electrochemical behavior of curcumin has been also investigated by means of cyclic voltammetry and standard theoretical quantum chemical calculations in a mixed solvent of water-ethanol. The pH dependence of the redox activity of curcumin derivatives in the mixture solutions at different temperatures has been used for the experimental determination of the standard reduction potential and changes of entropy, enthalpy, and Gibbs free energy for the studied reaction. The electrooxidation process leads to several products that are studied theoretically using DFT calculations. The calculated values of E° are in good agreement with the experiment. Uniquely, the change of solvation energy for the studied reaction has been investigated by two models and the results are in perfect agreement with one another.


Main Subjects

This is an open access article under the CC-BY-SA 4.0 license.(

[1] Petrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy reviews6(11), 1-5.
[2] Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: the story so far. European journal of cancer41(13), 1955-1968.
[3] Huang, W. Y., Cai, Y. Z., & Zhang, Y. (2009). Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrition and cancer62(1), 1-20.
[4] Harada, T., McTernan, H. L., Pham, D. T., Lincoln, S. F., & Kee, T. W. (2015). Femtosecond transient absorption spectroscopy of the medicinal agent curcumin in diamide linked γ-cyclodextrin dimers. The Journal of Physical Chemistry B119(6), 2425-2433.
[5] Shishodia, S., Sethi, G., & Aggarwal, B. B. (2005). Curcumin: getting back to the roots. Annals of the New York Academy of sciences1056(1), 206-217.
[6] Schraufstätter, E., & Bernt, H. (1949). Antibacterial action of curcumin and related compounds. Nature164(4167), 456-457.
[7] Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer research23(1/A), 363-398.
[8] Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer10(1), 1-19.
[9] Julie, S., & Jurenka, M. (2009). Anti-inflammatory properties of curcumin, a major constituent. Altern Med Rev14(2), 141-153.
[10] Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food chemistry105(3), 940-949.
[11] Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., & Spiteller, M. (2005). DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry102(6), 1069-1079.
[12] Benassi, R., Ferrari, E., Lazzari, S., Spagnolo, F., & Saladini, M. (2008). Theoretical study on Curcumin: A comparison of calculated spectroscopic properties with NMR, UV–vis and IR experimental data. Journal of Molecular Structure892(1-3), 168-176.
[13] Payton, F., Sandusky, P., & Alworth, W. L. (2007). NMR study of the solution structure of curcumin. Journal of natural products70(2), 143-146.
[14] Kawano, S. I., Inohana, Y., Hashi, Y., & Lin, J. M. (2013). Analysis of keto-enol tautomers of curcumin by liquid chromatography/mass spectrometry. Chinese Chemical Letters24(8), 685-687.
[15] Cornago, P., Claramunt, R. M., Bouissane, L., Alkorta, I., & Elguero, J. (2008). A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron64(35), 8089-8094.
[16] Anjomshoa, S., Namazian, M., & Noorbala, M. R. (2016). The effect of solvent on tautomerism, acidity and radical stability of curcumin and its derivatives based on thermodynamic quantities. Journal of Solution Chemistry45, 1021-1030.
[17] Anjomshoa, S., Namazian, M., & Noorbala, M. R. (2017). Is curcumin a good scavenger of reactive oxygen species? A computational investigation. Theoretical Chemistry Accounts136, 1-6.
[18] Curtiss, L. A., Redfern, P. C., & Raghavachari, K. (2007). Gaussian-4 theory. The Journal of chemical physics126(8), 084108.
[19] Boese, A. D., & Martin, J. M. (2004). Development of density functionals for thermochemical kinetics. The Journal of chemical physics121(8), 3405-3416.
[20] Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B113(18), 6378-6396.
[21] Frisch, M. J. (2009) Gaussian 09, Revision A.02, Gaussian Inc.
[22] Ghosh, R., Mondal, J. A., & Palit, D. K. (2010). Ultrafast dynamics of the excited states of curcumin in solution. The Journal of Physical Chemistry B114(37), 12129-12143.
[23] Eslami, M., Zare, H. R., & Namazian, M. (2012). Thermodynamic parameters of electrochemical oxidation of L-DOPA: Experimental and theoretical studies. The Journal of Physical Chemistry B116(41), 12552-12557.
[24] Eslami, M., Namazian, M., & Zare, H. R. (2013). Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies. The Journal of Physical Chemistry B117(9), 2757-2763.