Synthesis, characterization and X-ray crystallography study of stable ylide of di-tert-butyl-2-(2-indolinon-1-yl)-3-(trimethoxyphosphorane ylidene) butanedioate

Document Type : Original Article

Authors

1 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran

2 Research Center for Conservation of Culture Relicst (RCCCR), Research Institute of Cultural Heritage & Tourism, Tehran, Iran

3 School of Biomedical, Biomolecular and Chemical Sciences, M310, University of Western Australia, Perth, WA 6009, Australia

4 Ilam Petrochemical, Company (ILPC), P.O. BOX 6931994749 ,Ilam, Iran

Abstract

Stable ylide of di-tert-butyl-2-(2-indolinon-1-yl)-3-(trimethoxyphosphorane ylidene) butanedioate was synthesized by means of catalyst-free reaction of trimethyl phosphite, di-tert-butylacetylene dicarboxylate and 2-indolinone in n-hexane/diethyl ether at ambient temperature. Obtained product was characterized by 1H, 13C, 31P NMR, FT-IR and mass spectroscopy. The crystal structure of the stable ylide was determined by X-ray crystallography. The title compound crystallized in monoclinic, space group P21/c and cell parameters a=15.8079(7) Å, b= 18.7521(13) Å, c =17.4987(10) Å, β= 95.504(6)° and Z=8. The X-ray study showed that adjacent carbonyl group (C291=O291, C191=O191) in the ylide moiety of compound had a resonance with bond of C=P. These results show clearly that environment of C(19, 29) is planar.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Tang, Z., Kong, N., Ouyang, J., Feng, C., Kim, N. Y., Ji, X., Wang, C., Farokhzad, O. C., Zhang, H., & Tao, W. (2020). Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter, 2(2), 297-322.

[2] Fabiańska, I., Bucher, M., & Häusler, R. E. (2019). Intracellular phosphate homeostasis – A short way from metabolism to signaling. Plant Sci, 286, 57-67.

[3] Puziy, A. M., Poddubnaya, O. I., Gawdzik, B., & Tascón, J. M. D. (2020). Phosphorus-containing carbons: Preparation, properties and utilization. Carbon, 157. 796-846.

[4] Bozorgvar, M. S., Tarahhomi, A., & Van der Lee, A. (1400). Synthesis and structural study of two new phosphorus-oxygen compounds belonging to two different families of phosphoriamides and phosphates. Applied Chemistry, 16(58), 95-106. ( in Persian)

[5] Tarahhomi, A., Pourayoubi, M. J., Golen, A., & Rheingold, A. L. (1396). Synthesis, characterization and structural study of new phosphoric triamides. Applied Chemistry,12(42), 243-252. (in Persian)

[6] Tarahhomi, A., Rheingold,A. L., & Golen, J. A. (2017) . Synthesis, crystal structure and Hirshfeld surface analysis of new phosphoric triamide [2-F-C6H4C(O)NH]P(O)[NHCH(CH3)2]2. Applied Chemistry,11 (41) , 23-30. (in Persian)

[7] Kolodiazhnyi, O. I., Kukhar, V. P & Kolodiazhna, A. O. (2014). Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds. Tetrahedron: Asymmetry, 25 (12), 865-922.

[8] Kawaguchi, S-I., Yamamoto,Y., & Ogawa, A. (2020). Catalytic synthesis of sulfur and phosphorus compounds via atom-economic reactions. Mendeleev Commun.30(2), 129-138.

[9] Ramazani, A., & Kazemizadeh, A. R. (2011). Preparation of Stabilized Phosphorus Ylides via Multicomponent Reactions and Their Synthetic Application. Curr., Org. Chem. 15, 3986-4020.

[10] Bahrami, M., Ramazani, A., Hanifehpour, Y., Fattahi, N., Fardood, S. T., Asiabi, P. A., & Joo, S. W. (2016). In situ generated stabilized phosphorus ylides mediated a mild and efficient method for the preparation of some new sterically congested electron-poor N-vinylated heterocycles.  Phosphorus Sulfur Silicon Relat. Elem.191(10), 1368-1374.

[11] Rostamizadeh, M., Maghsoodlou, M. T., Habibi-Khorassani, S. M., Hazeri, N., Sajadikhah, S. S., Charati,F. R., Kazemian, M. A., Skelton, B. W., & Makha, M. (2011). Molecular structure and theoretical studies of new stable phosphorus ylides derived from trialkyl phosphites. Heteroat. Chem. 22(1), 36-43.

[12] Maghsoodlou, M., Heydari,T. R., Hazeri, N., Habibi-Khorassani, S. M., Barahuie, F., Navidno, J., Rostamizadeh, M., & Sajadikhah, S. S. (2015). An efficient one-pot synthesis of C-alkylated phenols and benzofuran derivatives with phosphanylidene substituents. Res. Chem. Intermed. 41, 2609-2617.

[13] Ramazani, A., Kazemizadeh, A. R., Ahmadi, E., Noshiranzadeh, N., & Souldozi, A. (2008). Synthesis and Reactions of Stabilized Phosphorus Ylides. Curr. Org. Chem. 12 (1), 59-82.

[14] Dadrass, A., Rahchamani, H., Khalafy, J., Ramazani, A., Habashi, B. P., Marjani, A. P., Souldozi, A., Ślepokura, K., Lis, T., & Rouhani, M. (2015). Study of Conversion of Polymeric Organophosphorus Ylide Complexes of Mercury(II) Halides to Phenazine Complexes: X-Ray Crystal Structure and Spectral Characterizations. Phosphorus Sulfur Silicon Relat. Elem.190(3), 360-371.

[15] Wittig, G., & Rieber, M. (1949). Über die Metallierbarkeit von quaternären Ammonium‐ und Phosphonium‐Salzen. Justus Liebigs Ann. Chem.562(3), 177-186.

[16] Wittig, G., & Geissler, G. (1953). Zur Reaktionsweise des Pentaphenyl‐phosphors und einiger Derivate. Justus Liebigs Ann. Chem. 580(1), 44-57.

[17] O. I. Kolodiazhnyi. (1999). Phosphorus Ylides: Chemistry and Applications in Organic Synthesis, John Wiley & Sons.
[18] Rodriguez, A. R., & Spur, B. W. (2015). First total synthesis of pro-resolving and tissue-regenerative Maresin sulfido-conjugates. Tetrahedron Lett. 56, 3936-3940.

[19] Ismail, T., Shafi, S., Srinivas, J., Sarkar, D., Qurishi, Y., Khazir, J., Alam, M. S., & Kumar, H. M. S. (2016). Synthesis and tyrosinase inhibition activity of trans-stilbene derivatives. Bioorg. Chem.64, 97-102.

[20] Pugachev, M. V., Bulatov, T. M., Nguyen, T. T. N., Pavelyev, R. S., Gnezdilov, O. I., Lodochnikova, O. A., Islamov, D. R., Kataeva, O. N., Balakin, K. V., & Shtyrlin,Y. G. (2017). Wittig reactions of a bis-triphenylphosphonium pyridoxine derivative. Tetrahedron Lett.58 (8), 766-769.

[21] Diaz-Muñoz, G., Isidorio, R. G., Miranda, I. L., de S. Dias, G. N., Diaz., & M. A. N. (2017). A concise and efficient synthesis of tetrahydroquinoline alkaloids using the phase transfer mediated Wittig olefination reaction. Tetrahedron Lett. 58(23), 3311-3315.

[22] Tsai, Y-L., Syu, S -E., Yang, S -M., Das, U., Fan, Y -S., Lee, C-J & Lin, W. (2014). Synthesis of multi-functional alkenes via Wittig reaction with a new-type of phosphorus ylides.Tetrahedron. 70(34), 5038-5045.

[23] Üngören, Ş. H., Albayrak, S., Günay, A., Yurtseven, L., & N. Yurttaş. (2015). A new method for the preparation of 5-acylidene and 5-imino substituted rhodanine derivatives and their antioxidant and antimicrobial activities. Tetrahedron. 71(24) 4312-4323.

[24] Sheldrick, G. M., (2008). A short history of SHElX, Acta Crystallogr. Sect. A. 64, 112-122.
[25] Sheldrick, G. M., SHELXS-97 and SHELXL-97, FORTRAN programs for crystal structure solution and refinement, University of Gottingen (1997).
[26] X-STEP32, Version 1.07b, X- ray structure evaluation package, Stoe&Cie GmbH, Darmstadt, Germany (2000).
[27] X-RED32 Version 1.28b, Program for Data Reduction and Absorption Correction, Stoe&Cie GmbH, Darmstadt, Germany (2005). X- SHAPE Version 2.05, Program for Crystal Optimization for Numerical, Stoe&Cie GmbH, Darmstadt, Germany, (2004).
[28] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V. B., Mennucci, Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al- Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., & Pople, J.A. (2004). Gaussian 03, RevisionD.01, Gaussian, Inc., Wallingford CT.
[29] Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M &Weinhold, F. (2001).Theoretical Chemistry, Institute University of Wisconsin,Madison, WI.

[30] Castañeda, F., Silva, P., Bunton, C .A., Garland, M. T., & Baggio, R. (2011). Conformations of diester triphenylphosphonium ylides with an ylidic ester or keto and ester ylidic groups. Acta Cryst, C 67, o319-o323.

[31] Ramazani, A., Dolatyari, L., Kazemizadeh, A. R., Ahmadi, E., Torabi, A. A., & Welter, R. (2004). Crystal structure of diethyl 2-(dibenzoylmethyl)-3-(triphenylphosphoranylidene) succinate, C41H37O6PZ. Kristallogr. NCS. 219, 181-183.

[32] Prabha, E. A. J. Y., Kumar, S. S, Padala, A. K., Ahmed, Q. N., & Athimoolam, S. (2016). Crystal structure of ethyl 2-[2-(4-methyl-benzo-yl)-5-p-tolyl-1H-imidazol-1-yl]acetate. Acta Cryst. E 72 (3), 347-349.