Synthesis of nanoparticles of Pd(II) complexes containing triazole and tetrazole derivative ligands and corresponding metal-nano oxides by sonochemical method

Document Type : Original Article

Authors

1 School of Chemistry, Damghan University, Damghan, Iran

2 Department of Chemistry, Farhangian University, Tehran, Iran

Abstract

In this research, nanoparticles of the (1) [PdCl2(aemptrz)], and (2) [Pd2(μ-mmtz)4].2CH3CN, have been synthesized using ultrasonic waves in the ultrasonic bath (sonochemistry method, which is one of the methods of liquid state processing) at constant temperature and different times. Both complexes were analyzed using (XRD) and (FTIR) techniques. Nanoparticles of PdO, prepared by calcination in an electric furnace and characterized by (FESEM), (XRD), and (FT-IR) techniques. The results of XRD analysis showed that the synthesized PdO nanoparticles (resulting from nano complexes 1 and 2) crystallized in the space group P42/mmc of the tetragonal (for 1) and P2/c space group of the monoclinic (for 2) systems. The results of the FESEM micrographs showed that the size of the synthesized PdO particles derived from nano complex (1) and (2) is between 35.44 - 61.36 and 34.21 - 67.69 nm, respectively.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Scott-Fordsmand, J. J., Amorim, M. J. D. B., de Garidel-Thoron, C., Castranova, V., Hardy, B., Linkov, I. & Hendren, C. O. (2021). Bridging international approaches on nanoEHS. Nature nanotechnology16(6), 608-611. 
[2] Ding, M., Chen, G., Xu, W., Jia, C., & Luo, H. (2020). Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science2(3), 264-280.
[3] Plata, D. L., & Janković, N. Z. (2021). Achieving sustainable nanomaterial design though strategic cultivation of big data. Nature Nanotechnology16(6), 612-614.
[4] Li, C., Luo, M., Xia, Z., & Guo, S. (2020). High-index faceted noble metal nanostructures drive renewable energy electrocatalysis. Nano Materials Science2(4), 309-315.
[5] Mendes, G. P., Kluskens, L. D., Mota, M., Lanceros-Méndez, S., & Hatton, T. A. (2021). Spherical and needle shaped magnetic nanoparticles for friction and magnetic stimulated transformation of microorganisms. Nano-Structures & Nano-Objects26, 100732.
[6] Zong, Q., Liu, C., Yang, H., Zhang, Q., & Cao, G. (2021). Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today38, 101201.
[7] Zhu, M., Zhu, F., & Schmidt, O. G. (2021). Nano energy for miniaturized systems. Nano Materials Science3(2), 107-112.
[8] Sealy, C. (2021). Novel nanocrystals catch the light.
[9] Ge, F., Xue, J., Du, Y., & He, Y. (2021). Unmodified single nanoparticles undergo a motion-pattern transition on the plasma membrane before cellular uptake. Nano Today39, 101158.
[10] Aghaee Al-Qalandis, M., (2012), Optimization and Application of Layered Double Hydroxides Nanoparticle Based on Aluminum for Preconcenteration and Determination of Some Organic and Inorganic Compounds (M.S. thesis, The Oromia University).
[11] Hekmati, M., Yousefi, M., Ziyadi, H., Ghasemi, E., Safari Mehr, P., Veisi, H., & Maleki, B. (2021). Catalytic applications of coated nanopalladium particles coated on modified GO by Thymbraspicata extract in Suzuki coupling reactions. Applied Chemistry16(58), 233-244. (in Persian)
[12] Keypour, H., & Noroozi, M. (2016). Hydrogenation of benzene in gasoline fuel over nanoparticles (Ni, Pt, Pd, Ru and Rh) supported fullerene: Comparison study. Applied Chemistry10(37), 31-42. (in Persian)
[13] Shirkhanloo, H., Farahani, H., Kian, M. J., Eftekhar, F., & Shahrokhi, S. (2012). Investigation and determination of mercury vapor absorption by Nano particle palladium sorbent. Applied Chemistry7(24), 19-32. (in Persian)
[14] Xu, Y., Jin, S., Xu, H., Nagai, A., & Jiang, D. (2013). Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews42(20), 8012-8031.
[15] Hou, Z., Theyssen, N., Brinkmann, A., & Leitner, W. (2005). Biphasic aerobic oxidation of alcohols catalyzed by poly (ethylene glycol)‐stabilized palladium nanoparticles in supercritical carbon dioxide. Angewandte Chemie International Edition44(9), 1346-1349.
[16] Beller, M., Fischer, H., Kühlein, K., Reisinger, C. P., & Herrmann, W. A. (1996). First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. Journal of organometallic chemistry520(1-2), 257-259.
[17] Seyfi, S., (2017), Synthesis, Characterization, Crystal Structure Determination, Solution Studies and Density Functional Theory (DFT) Investigation of Transition Metal (Pd & Hg (II)) Complexes, Containing Triazole, Tetrazole, 2,2'- bipyridine and 1,10-phenanthroline Derivatives (Ph.D Thesis, Damghan University).
[18] Seyfi, S., Alizadeh, R., Ganji, M. D., & Amani, V. (2017). Palladium (II) complexes with 1, 2, 4-triazole derivative & ethylene diamine as ligands, synthesis, characterization, luminesence study & crystal structure determination. Polyhedron134, 302-315.
[19] Zhang, J., Duan, L., Jiang, D., Lin, Q., & Iwasa, M. (2005). Dispersion of TiN in aqueous media. Journal of colloid and interface science286(1), 209-215.
[20] Kalsi, P. S. (2016). Spectroscopy of Organic Compounds, New Age International Pvt Ltd Publishers.
[21] Durig, J. R., Layton, R., Sink, D. W., & Mitchell, B. R. (1965). Far infrared spectra of palladium compounds—I. The influence of ligands upon the palladium chloride stretching frequency. Spectrochimica Acta21(8), 1367-1378.
[22] Seyfi, S., Alizadeh, R., Ganji, M. D., & Amani, V. (2018). Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy190, 298-311.
[23] Majdolashrafi, M. S., Raissi Shabari, A., & Amani, V. (2018). Binuclear paddle-wheel platinum (II) and platinum (III) complexes containing 4-methyl-4H-1, 2, 4-triazole-3-thiol ligand: Synthesis, X-ray studies, and spectroscopic characterization. Phosphorus, Sulfur, and Silicon and the Related Elements193(7), 415-422.
[24] Mercury 1.4. 1. Copyright Cambridge Crystallographic Data Center, 12 Union Road.
[25] Ghadermazi, M., Taheriha, M., & Amani, V. (2015). Zinc (II) and Cadmium (II) Mixed-Ligand Coordination Polymers Constructed from 4-Methyl-1, 2, 4-triazole-3-thiol and Ethylene Diamine: X-ray Studies, Spectroscopic Characterization, and Thermal Analyses. Journal of Inorganic and Organometallic Polymers and Materials25, 712-719.
[26] Tura, J. M., Regull, P., Victori, L., & De Castellar, M. D. (1988). XPS and IR (ATR) analysis of Pd oxide films obtained by electrochemical methods. Surface and interface analysis11(8), 447-449.
[27] Seyfi, S., Alizadeh, R., Ganji, M. D., & Amani, V. (2019). Polymorphism of Palladium (II) Complexes: Crystal Structure Determination, Luminescence Properties, Hirshfeld Surface Analyses and DFT/TD‐DFT Studies. ChemistrySelect4(20), 6209-6218.
[28] Taheriha, M., Ghadermazi, M., & Amani, V. (2016). Dimeric and polymeric mercury (II) complexes of 1-methyl-1, 2, 3, 4-tetrazole-5-thiol: Synthesis, crystal structure, spectroscopic characterization, and thermal analyses. Journal of Molecular Structure, 1107, 57-65.