Synthesis and characterization of porphyrin-modified chitosan biopolymer and its application in the degradation of methylene blue under visible light

Document Type : Original Article

Authors

Department of Organic Chemistry, Iran University of Science and Technology, Tehran, Iran

Abstract

In this research, first, the cobalt (III) complex of 20,15,10,5-tetrakis (tetra(4-carboxyphenol)) porphyrin (Co-THPBP) was synthesized and its terminal acidic groups were chlorinated using thionyl chloride. Then, in order to stabilize the desired complex on the chitosan polymer substrate, the chlorinated cobalt-porphyrin complex was modified using protected 4-aminophenol, and as well as by deprotection of the terminal hydroxyl group of 4-aminophenol, the modified complex was attached to the chitosan polymer substrate. The prepared compounds were characterized using Fourier transform infrared spectroscopy (FT-IR), 1H NMR, Ultraviolet–visible spectroscopy (UV-Vis), scanning electron microscope (SEM), Diffuse Reflectance Spectroscopy (DRS). The prepared compound was applied for the photocatalytic removal of methylene blue in the presence of visible light. The results confirmed that the presence of chitosan polymer substrate has a significant effect on increasing the photodegradation of methylene blue dye.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Dai, L., Chang, D. W., Baek, J. B., & Lu, W. (2012). Carbon nanomaterials for advanced energy conversion and storage. small8(8), 1130-1166.
[2] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews114(19), 9919-9986.
[3] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science392, 658-686.
[4] Akhtar, B., Ghafuri, H., & Rashidizadeh, A. (2021). Synergistic effect of iodine doped TiO2 nanoparticle/g-C3N4 nanosheets with upgraded visible-light-sensitive performance toward highly efficient and selective photocatalytic oxidation of aromatic alcohols under blue LED irradiation. Molecular Catalysis506, 111527.
[5] Ghafuri, H., Dehghani, M., Rashidizadeh, A., & Rabbani, M. (2019). Synthesis and characterization of magnetic nanocomposite Fe3O4@ TiO2/Ag, Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation. Optik179, 646-653.
[6] Ghafuri, H., Movahedinia, Z., Rahimi, R., & Zand, H. R. E. (2015). Synthesis of 5, 10, 15, 20-tetrakis [4-(naphthalen-2-yloxycarbonyl) phenyl] porphyrin (TNBP) and its complexes with zinc and cobalt and an investigation of the photocatalytic activity of nanoFe 3 O 4@ ZrO 2–TNBP. RSC advances5(74), 60172-60178.
[7] Ghafuri, H., & Rashidizadeh, A. (2020). Facile preparation of CuS-g-C3N4/Ag nanocomposite with improved photocatalytic activity for the degradation of rhodamine B. Polyhedron179, 114368.
[8] Afroozan Bazghale, A., & Mohammad-khah, A. (2021). Improvement of methylene blue removal by La: ZnO/GO nanocomposites in the presence of ultrasound. Applied Chemistry16(58), 77-94.
[9] Sessler, J. L., & Seidel, D. (2003). Synthetic expanded porphyrin chemistry. Angewandte Chemie International Edition42(42), 5134-5175.
[10] Harvey, J. D., & Ziegler, C. J. (2003). Developments in the metal chemistry of N-confused porphyrin. Coordination chemistry reviews247(1-2), 1-19.
[11] Feng, L., Wang, K. Y., Joseph, E., & Zhou, H. C. (2020). Catalytic porphyrin framework compounds. Trends in Chemistry2(6), 555-568.
[12] Yaghoubi-berijani, M., & Bahramian, B. (2021). Synthesis, design and use of new BiOBr/Ag@ TCPP and BiOBr/Ag@ SnTCPP nanocomposites for degradation of dye pollutant. Applied Chemistry16(58), 287-306.
[13] Kou, S. G., Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules169, 85-94.
[14] Saheed, I. O., Da Oh, W., & Suah, F. B. M. (2021). Chitosan modifications for adsorption of pollutants–A review. Journal of hazardous materials408, 124889.
[15] Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International journal of biological macromolecules150, 1072-1083.
[16] Mohseni, F., Akbarzadeh Torbati, N., & Kondori, T. (2021). Kinetics and isotherm investigation of adsorption process of nickel oxide nanoparticles in edible dye removal from industrial effluent. Applied Chemistry16(58), 333-348.
[17] Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the total environment717, 137222.
[18] Chiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., & Hsu, Y. J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts9(5), 430.
[19] Mashkoor, F., & Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials500, 166408.
[20] Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D. O., & Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Materials Today Chemistry16, 100233.
[21] Setarehshenas, N., Hosseini, S. H., Nasr Esfahany, M., Mansouri, M., & Ahmadi, G. (2018). Photocatalytic Degradation of Basic Red 46 Azo Dye using Activated Carbon-doped ZrO2/UV Process. Applied Chemistry13(48), 53-66.
[22] Nakazono, T., Parent, A. R., & Sakai, K. (2013). Cobalt porphyrins as homogeneous catalysts for water oxidation. Chemical Communications49(56), 6325-6327.
[23] Rahimi, R., Mehrehjedy, A., & Zargari, S. (2014, October). Synthesis and photocatalytic activity investigation of CuO nanorod functionalized with porphyrin. In Proceedings of The 18th International Electronic Conference on Synthetic Organic Chemistry.
[24] Alvarez, I. B., Wu, Y., Sanchez, J., Ge, Y., Ramos-Garcés, M. V., Chu, T., ... & Villagrán, D. (2021). Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. Sustainable Energy & Fuels5(2), 430-437.
[25] Lions, M., Tommasino, J. B., Chattot, R., Abeykoon, B., Guillou, N., Devic, T., ... & Fateeva, A. (2017). Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chemical Communications53(48), 6496-6499.
[26] Wang, C. C., Lee, C. K., Lyu, M. D., & Juang, L. C. (2008). Photocatalytic degradation of CI Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes and Pigments76(3), 817-824.