[1] Borgohain, C., & Borah, J. P. (2020). CoFe2O4–Fe3O4 bimagnetic heterostructure: a versatile core-shell nanoparticle with magnetically recoverable photocatalytic and self heating properties. Materials Research Express, 7(1), 016111.
[2] Bu, D., Li, N., Zhou, Y., Feng, H., Yu, F., Cheng, C., Li M., Xiao L., & Ao, Y. (2020). Enhanced UV stability of N-halamine-immobilized Fe3O4@SiO2@TiO2 nanoparticles: synthesis, characteristics and antibacterial property. New Journal of Chemistry, 44(25), 10352-10358.
[3] Shen, Y. F., Tang, J., Nie, Z. H., Wang, Y. D., Ren, Y., & Zuo, L. (2009). Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and purification technology, 68(3), 312-319.
[4] Liu, J., Liu, G., Zang, L., & Liu, W. (2015). Calcein-functionalized Fe3O4@SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper (II) ion. Microchimica Acta, 182, 547-555.
[5] Hou, S., Li, X., Wang, H., Wang, M., Zhang, Y., Chi, Y., & Zhao, Z. (2017). Synthesis of core–shell structured magnetic mesoporous silica microspheres with accessible carboxyl functionalized surfaces and radially oriented large mesopores as adsorbents for the removal of heavy metal ions. RSC advances, 7(82), 51993-52000.
[6] Peng, X., Xu, F., Zhang, W., Wang, J., Zeng, C., Niu, M., & Chmielewská, E. (2014). Magnetic Fe3O4@silica–xanthan gum composites for aqueous removal and recovery of Pb2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 27-36.
[7] Wolf, M., Fischer, N., & Claeys, M. (2018). Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design. Materials Chemistry and Physics, 213, 305-312.
[8] Chen, M., Yamamuro, S., Farrell, D., & Majetich, S. A. (2003). Gold-coated iron nanoparticles for biomedical applications. Journal of applied physics, 93(10), 7551-7553.
[9] Guo, C., Lu, W., Wei, G., Jiang, L., Yu, Y., & Hu, Y. (2018). Formation of 1D chain-like Fe3O4@ C/Pt sandwich nanocomposites and their magnetically recyclable catalytic property. Applied Surface Science, 457, 1136-1141.
[10] Liu, C., Li, Y., & Duan, Q. (2020). Preparation of magnetic and thermal dual-responsive zinc-tetracarboxyl-phthalocyanine-g-Fe3O4@SiO2@TiO2-g-poly (N-isopropyl acrylamide) core-shell green photocatalyst. Applied Surface Science, 503, 144111.
[11] Jeong, U., Teng, X., Wang, Y., Yang, H., & Xia, Y. (2007). Superparamagnetic colloids: controlled synthesis and niche applications. Advanced Materials, 19(1), 33-60.
[12] Gholamrezapor, E., & Eslami, A. (2019). Sensitization of magnetic TiO2 with copper (II) tetrahydroxylphenyl porphyrin for photodegradation of methylene blue by visible LED light. Journal of Materials Science: Materials in Electronics, 30(5), 4705-4715.
[13] Campbell, W. M., Burrell, A. K., Officer, D. L., & Jolley, K. W. (2004). Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews, 248(13-14), 1363-1379.
[14] Basavarajappa, P. S., Patil, S. B., Ganganagappa, N., Reddy, K. R., Raghu, A. V., & Reddy, C. V. (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International journal of hydrogen energy, 45(13), 7764-7778.
[15] Doss, N., Carré, G., Keller, V., André, P., & Keller, N. (2018). Photocatalytic decontamination of airborne T2 bacteriophage viruses in a small-size TiO2/β-SiC alveolar foam LED reactor. Water, Air, & Soil Pollution, 229, 1-11.
[16] Casado, C., Timmers, R., Sergejevs, A., Clarke, C. T., Allsopp, D. W. E., Bowen, C. R., Van Grieken, R. & Marugán, J. (2017). Design and validation of a LED-based high intensity photocatalytic reactor for quantifying activity measurements. Chemical Engineering Journal, 327, 1043-1055.
[17] Fereja, T. H., Hymete, A., & Gunasekaran, T. (2013). A recent review on chemiluminescence reaction, principle and application on pharmaceutical analysis. International Scholarly Research Notices, 2013.
[18] Burdo, T. G., & Seitz, W. R. (1975). Mechanism of cobalt catalysis of luminol chemiluminescence. Analytical Chemistry, 47(9), 1639-1643.
[19] Bostick, D. T., & Hercules, D. M. (1975). Quantitative determination of blood glucose using enzyme induced chemiluminescence of luminol. Analytical chemistry, 47(3), 447-452.
[20] Schneider, E. (1941). Chemiluminescence of luminol catalyzed by iron complex salts of chlorophyll derivatives. Journal of the American Chemical Society, 63(5), 1477-1478.
[21] Alipour, A., Lakouraj, M. M., Ojani, R., Roudbari, M. N., Chaichi, M. J., & Nemati, A. (2019). Electrochemical and chemiluminescence properties of polyaniline/pectin hybrid nanocomposites based on graphene and CdS nanoparticles. Polymer Testing, 76, 490-498.
[22] Vakh, C., Pochivalov, A., Podurets, A., Bobrysheva, N., Osmolovskaya, O., & Bulatov, A. (2019). Tin oxide nanoparticles modified by copper as novel catalysts for the luminol–H 2 O 2 based chemiluminescence system. Analyst, 144(1), 148-151.
[23] Zheng, X., Zhang, L., Li, J., Luo, S., & Cheng, J. P. (2011). Magnetic nanoparticle supported polyoxometalates (POMs) via non-covalent interaction: reusable acid catalysts and catalyst supports for chiral amines. Chemical Communications, 47(45), 12325-12327.
[24] ZieliĆska-Jurek, A., Bielan, Z., Dudziak, S., Wolak, I., Sobczak, Z., Klimczuk, T., Nowaczyk, G,. & Hupka, J. (2017). Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality. Catalysts, 7(12), 360.
[25] Chang, C. F., & Man, C. Y. (2011). Titania-coated magnetic composites as photocatalysts for phthalate photodegradation. Industrial & engineering chemistry research, 50(20), 11620-11627.
[26] Rumyantseva, V. D., Gorshkova, A. S., & Mironov, A. F. (2013). Improved method of 5, 10, 15, 20-tetrakis (4-hydroxyphenyl)-porphyrins synthesis. Macroheterocycles, 6, 59-61.
[27] Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., & Korsakoff, L. (1967). A simplified synthesis for meso-tetraphenylporphine. The Journal of Organic Chemistry, 32(2), 476-476.
[28] Al-Zahrani, E., Soomro, M. T., Bashami, R. M., Rehman, A. U., Danish, E., Ismail, I. M., Aslam, M, & Hameed, A. (2016). Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. Journal of Environmental Chemical Engineering, 4(4), 4330-4341.
[29] Javidi, J., Esmaeilpour, M., & Dodeji, F. N. (2015). Immobilization of phosphomolybdic acid nanoparticles on imidazole functionalized Fe3O4@SiO2: A novel and reusable nanocatalyst for one-pot synthesis of Biginelli-type 3, 4-dihydro-pyrimidine-2-(1 H)-ones/thiones under solvent-free conditions. RSC Advances, 5(1), 308-315.
[30] Pourzad, A., Sobhi, H. R., Behbahani, M., Esrafili, A., Kalantary, R. R., & Kermani, M. (2020). Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@ SiO2@ Fe3O4 nanocomposite. Journal of Molecular Liquids, 299, 112167.
[31] Wu, H., Wu, G., & Wang, L. (2015). Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technology, 269, 443-451.
[32] Fan, Y., Ma, C., Li, W., & Yin, Y. (2012). Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method. Materials science in semiconductor processing, 15(5), 582-585.