Biodiesel production by a novel composite of Fe (III)-based MOF and phosphomolybdic acid as an efficient and heterogeneous catalyst

Document Type : Original Article


1 Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran

2 Department of Chemistry, Payame Noor University (PNU), P.OBox: 19395-4697 Tehran, Iran


The synthesis of MIL-53(Fe) samples and encapsulation process of phosphomolybdic acid implemented using ultrasound at ambient temperature and atmospheric pressure. Characterization of newly synthesized nanocomposite was carried out using various techniques such as XRD, FT-IR, SEM, EDS, BET and ICP. The catalytic activity of the prepared nanocomposites, PMA@MIL-53(Fe), was tested through the esterification reaction of oleic acid with ethanol under ultrasonic irradiation. Biodiesel production process using certain molar ratio of oleic acid/ethanol, PMA@MIL-53(Fe) as catalyst (10-200 mg) containing different amounts of PMA (0-40%), at different reaction times (5-20 minutes), total energy consumption (in watts, W) and ambient temperature under ultrasound conditions. The operating conditions of each of parameters were varied to study their effects on product yield. The results indicated that the synthesized composites show excellent catalytic activity. by encapsulating heteropoly acids in the MOF network, the challenges of using heteropoly acids, such as low contact surface and high solubility, are largely eliminated. The use of heteropoly acids in the industrial scales shows promise, provided the mentioned problems can be overcome


Main Subjects

This is an open access article under the CC-BY-SA 4.0 license.(

[1] Mujtaba, M.A., Muk Cho Haeng, Masjuki, H.H., Masjuki, M.A., Ong, H.C., Gul, M., Harith, M.H., Yusoff, M.N.A.M. (2020). Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 6, 40-54.
[2] Ma, F., Hanna, M.A. (1999). Biodiesel production: a review. Bioresour. Technol. 70 (1), 1-15.
[3] Aransiola, E., Ojumu, T., Oyekola, O., Madzimbamuto, T., Ikhu-Omoregbe, D. (2014). A Review of Current Technology for Biodiesel Production: State of the Art. Biomass Bioenergy 61, 276-297.
[4] Meira, M., Quintella, C.M., Ribeiro, E.M.O., Silva, H.R.G., Guimarães, A.K. (2015). Overview of the challenges in the production of biodiesel. Biomass Conv. Bioref. 5, 321-329.
[5] Abbasi, S., Diwekar, U.M. (2014). Characterization and stochastic modeling of uncertainties in the biodiesel production. Clean Technol Environ Policy 16, 79-94.
[6] Mohapatra, S., Das, P., Swain, D., Satapathy, S., Sahu, S.R. (2016). A review on rejuvenated techniques in biodiesel production from vegetable oils. Int. J. Curr. Eng. Technol. 6, 100-111.
[7] Oh, P.P., Lau, H.L.N., Chen, J., Chong, M.F., Choo, Y.M. (2012). A review on conventional technologies and emerging process intensification (PI) methods for biodiesel production. Renewable Sustainable Energy Rev. 16 (7), 5131-5145.
[8] Vyas, A.P., Verma, J.L., Subrahmanyam, N. (2010). A review on FAME production processes. Fuel. 89 (1), 1-9.
[9] Talebian-Kiakalaieh, A., Amin, N.A.S., Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104, 683-710.
[10] Saleh, J., Tremblay, A.Y., Dubé, M.A. (2010). Glycerol removal from biodiesel using membrane separation technology. Fuel 89 (9), 2260-2266.
[11] Nikseresht, A., Daniyali, A., Ali-Mohammadi, M., Afzalinia, A., Mirzaie, A. (2017). Ultrasound-assisted biodiesel production by a novel composite of Fe (III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem. 37, 203-207.
[13] Maddikeri, G.L., Pandit, A.B., Gogate, P.R. (2012). Intensification Approaches for Biodiesel Synthesis from Waste Cooking Oil: A Review. Ind. Eng. Chem. Res. 51 (45), 14610-14628.
[14] D’Alessandro, B., Bidini, G., Zampilli, M., Laranci, P., Bartocci, P., Fantozzi, F. (2016). Straight and waste vegetable oil in engines: Review and experimental measurement of emissions, fuel consumption and injector fouling on a turbocharged commercial engine. Fuel 182, 198-209.
[16] Ramachandran, K., Suganya, T., Gandhi, N.N., Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable Sustainable Energy Rev. 22, 410-418.
[17] Choudhury, R., Goswami, P.P., Malani, R.S., Moholkar, V.S. (2014). Ultrasonic biodiesel synthesis from crude Jatropha curcas oil with heterogeneous base catalyst: Mechanistic insight and statistical optimization. Ultrason. Sonochem. 21 (3), 1050-1064.
[18] Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O'Keeffe, M., Kim, J., Yaghi, O.M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. Science 329, 424-428.
[19] Sánchez-Sánchez, M., Getachew, N., Díaz, K., Díaz-García, M., Chebude, Y., Díaz, I. (2015). Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17, 1500-1509.
[22] Ghasemi, S., Yousefi, M., Nikseresht, A., Omidi, H. (2021). Covalent binding and in-situ immobilization of lipases on a flexible nanoporous material. Process Biochem. 102, 92-101.
[23] Gaikwad, N.D., Gogate, P.R., (2015). Synthesis and application of carbon based heterogeneous catalysts for ultrasound assisted biodiesel production. Green Process Synth. 4, 17-30.
[24] Mahmoudi, J., Lotfollahi, M. N., Haghighi Asl, A. (2014). Experimental investigation of benzene alkylation in benzene cut by propylene over ZSM-5 zeolite as catalyst. J. Of Applied Chemistry, 31, 19-30, in Persian.
[25] Hossaini, Z., Shafaei, F., Sheikholeslami-Farahani, F., Ghasemi, N. (2020). Fe3O4-magnetic nanoparticles from essential oil of Orange peel catalyzed Green synthesis of pyridine derivatives: study of antioxidant activity of some synthezised compounds. J. Of Applied Chemistry, 54, 243-256, in Persian.
[26] Haghighi Asl, A., Ahmadpour, A., Fallah, N. (2017). Synthesis of Nano N-TiO2 for modeling of petrochemical industries spent caustic wastewater photocatalitic treatment in visible light using DOE method. J. Of Applied Chemistry, 42, 253-286, in Persian.
[27] Veisi, H., Nikseresht, A., Ahmadi, N., Khosravi, K., Saeidifar, F. (2019). Suzuki–Miyaura reaction by heterogeneously supported Pd nanoparticles on thio-modified multi walled carbon nanotubes as efficient nanocatalyst. Polyhedron, 162, 240-244.
[31] Gordon, J., Kazemian, H., Rohani, S. (2012). Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation. Micropor. Mesopor. Mat. 162, 36-43.
[32] Jing, X., Li, Z., Lu, B., Han, Y., Chi, Y., Hu, C. (2020). Assembly of polyoxometalate with graphene foam as a compressible monolithic catalyst for biodiesel production. APPL. CATAL. A-GEN. 598, 117613.
[34] Zhang, Q., Yue, C., Pu, Q., Yang, T., Wu, Z., Zhang, Y. (2019). Facile Synthesis of Ferric-Modified Phosphomolybdic Acid Composite Catalysts for Biodiesel Production with Response Surface Optimization. ACS Omega. 4, 9041-9048.
[35] Pukale, D.D., Maddikeri, G.L., Gogate, P.R., Pandit, A.B., Pratap, A.P. (2015). Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrason. Sonochem. 22, 278-286.
[36] Gupta, A.R., Yadav, S.V., Rathod, V.K. (2015). Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel 158, 800-806.
[37] Yadav, A.K., Khan, M.E., Pal, A., Singh, B. (2018). Ultrasonic-assisted optimization of biodiesel production from Karabi oil using heterogeneous catalyst. Biofuels, 1, 101-112.
[38] Jogi, R., Murthy, Y.S., Satyanarayana, M., Rao, T.N., Javed, S. (2016) Biodiesel production from degummed Jatropha curcas oil using constant-temperature ultrasonic water bath. Energy Sources Part A 38, 2610-2616.
[39] Maneechakr, P., Samerjit, J., Karnjanakom, S. (2015). Ultrasonic-assisted biodiesel production from waste cooking oil over novel sulfonic functionalized carbon spheres derived from cyclodextrin via one-step: a way to produce biodiesel at short reaction time. RSC Adv. 5, 55252-55261.
[40] Parida, S., Sahu, D.K., Misra, P.K. (2016). A rapid ultrasound-assisted production of biodiesel from a mixture of Karanj and soybean oil. Energy Sources Part A 38, 1110-1116.
[41] Martinez-Guerra, E., Gude, V.G. (2015). Continuous and pulse sonication effects on transesterification of used vegetable oil. Energy Convers. Manage. 96, 268-276.
[42] Khosravi, E., Shariati, A., Nikou, M.R.K. (2016). Instant biodiesel production from waste cooking oil under industrial ultrasonic irradiation. Int J Oil Gas Coal Technol. 11, 308-317.
[43] Kiss, A.A. (2009). Novel process for biodiesel by reactive absorption. Sep. Purif. Technol. 69, 280-287.
[44] Baskar, G., Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable Sustainable Energy Rev. 57, 496-504.
[45] Parak, S., Nikseresht, A., Alikarami, M., Ghasemi, S. (2022). RSM optimization of biodiesel production by a novel composite of Fe (ΙΙΙ)-based MOF and phosphomolybdic acid. Res Chem Intermed. 48, 3773-3793.