Preparation of poly (styrene-co-maleic anhydride) based magnetic nanocomposite as an effective catalyst for the synthesis of 3,2-dihydroquinazoline-4 (1H) derivatives

Document Type : Original Article


Faculty of Chemistry, Damghan University, Damghan, Iran


Abstract: In this study, a magnetic nanocomposite based on poly (styrene-co-maleic anhydride) (Fe3O4 @ PSMASA) was prepared in three steps. In the first step, poly (styrene-co-maleic anhydride) was prepared from the radical polymerization reaction of styrene and maleic anhydride monomers. In the second step, the iron oxide magnetic nanoparticles prepared by co-precipitation method were functionalized using 3-aminopropyltriethoxycylan (APTES). In the third step, the maleic anhydride ring in the copolymer was modified with sulfanilic acid and amine-activated magnetic iron nanoparticles to form carboxylic acid and sulfonic acid groups on poly (styrene-co-maleic anhydride). The catalytic activity of the resulted Fe3O4 @ PSMASA was investigated in the three-component reaction of isatoic anhydride, amines and aldehydes in ethanol as solvent. This method led to the synthesis of various derivatives of 3,2-dihydroquinazoline-4 (1H) in high yields. The catalyst can be recovered and reused in the reaction without significant loss catalytic activity. The other advantages of this method include high efficiencies, mild reaction conditions, good performance and environmental friendliness.


Main Subjects

This is an open access article under the CC-BY-SA 4.0 license.(

[1]. Akelah, A., & Sherrington, D. C. (1981). Application of functionalized polymers in organic synthesis. Chemical Reviews, 81(6), 557-587.
[2]. Chiroli, V., Benaglia, M., Puglisi, A., Porta, R., Jumde, R. P., & Mandoli, A. (2014). A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 16(5), 2798-2806.
[3]. Fisera, R., & Kralik, M. (1997). Catalysts based on organic polymers, their advantages and disadvantages, preparation, and industrial applications. Chemické listy, 91(6).
[4]. Duan, X., Xiao, J., Yin, Q., Zhang, Z., Mao, S., & Li, Y. (2012). Amphiphilic graft copolymer based on poly (styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery. International journal of nanomedicine, 4961-4972.
[5]. Mirani Nezhad, S., Pourmousavi, S. A., & Nazarzadeh Zare, E. (2022). Poly (styrene-co-maleic anhydride) modified with nickel sulfate and its application in the synthesis of 2-amino-4H-chromenes. Applied Chemistry, 17(62), 115-138. (in persian)
[6].  Moghaddam, K.G., Hashemianzadeh, S.M. (2015). Computational studies of the interactions between quinazolone derivatives and G-quadruplex DNA as an anticancer strategy.  Applied Chemistry. 10 (36) 177-186.
[7]. Gupta, V., Kashaw, S. K., Jatav, V., & Mishra, P. (2008). Synthesis and antimicrobial activity of some new 3–[5-(4-substituted) phenyl-1, 3, 4-oxadiazole-2yl]-2-styrylquinazoline-4 (3H)-ones. Medicinal Chemistry Research17(2-7), 205-211.
[8]. Alagarsamy, V., Solomon, V. R., & Dhanabal, K. (2007). Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 15(1), 235-241.
[9]. Nandy, P., Vishalakshi, M. T., & Bhat, A. R. (2006). Synthesis and antitubercular activity of Mannich bases of 2-methyl-3H-quinazolin-4-ones. Indian Journal of heterocyclic chemistry15(3), 293-294.
[10]. Hess, H. J., Cronin, T. H., & Scriabine, A. (1968). Antihypertensive 2-amino-4 (3H)-quinazolinones. Journal of medicinal chemistry, 11(1), 130-136.
[11]. Paneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V., & Rather, B. (2010). Anticonvulsant activity of Schiff bases of 3-amino-6, 8-dibromo-2-phenyl-quinazolin-4 (3H)-ones. Indian journal of pharmaceutical sciences72(3), 375.
[12]. Chen, J., Wu, D., He, F., Liu, M., Wu, H., Ding, J., & Su, W. (2008). Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Letters, 49(23), 3814-3818.
[13]. Abdollahi-Alibeik, M., & Shabani, E. (2011). Synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones catalyzed by zirconium (IV) chloride as a mild and efficient catalyst. Chinese Chemical Letters22(10), 1163-1166.
[14]. Tajbakhsh, M., Hosseinzadeh, R., Rezaee, P., & Tajbakhsh, M. (2014). H3PW12O40 catalyzed synthesis of benzoxazine and quinazoline in aqueous media. Chinese Journal of Catalysis, 35(1), 58-65.
[15]. Chen, J., Wu, D., He, F., Liu, M., Wu, H., Ding, J., & Su, W. (2008). Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Letters, 49(23), 3814-3818.
[16]. Bharathi, A., Roopan, S. M., Kajbafvala, A., Padmaja, R. D., Darsana, M. S., & Kumari, G. N. (2014). Catalytic activity of TiO2 nanoparticles in the synthesis of some 2, 3-disubstituted dihydroquinazolin-4 (1H)-ones. Chinese Chemical Letters, 25(2), 324-326.
[17]. M. T. Maghsoodlou, N, Khorshidi, M. R. Mousavi, N. Hazeri and S.M. Habibi-Khorassani, Res. Chem. Intermed., 41 (2015), 7497.
[18]. Baruah, S. D., & Laskar, N. C. (1996). Styrene‐maleic anhydride copolymers: Synthesis, characterization, and thermal properties. Journal of applied polymer science, 60(5), 649-656.
[19]. Khorsi Damghani, F., Pourmousavi, S. A., & Kiyani, H. (2019). Starch-derived magnetic nanoparticles (Fe3O4@ C-SO3H): Synthesis, Characterization and Its application on the preparation of dihydropyrano [c] chromenes, 2‑Amino-3-cyano‑4H‑pyrans and 2-amino-4H-chromenes derivatives. Applied Chemistry, 14(53), 109-124.
[20]. Safari, J., & Gandomi-Ravandi, S. (2014). Application of the ultrasound in the mild synthesis of substituted 2, 3-dihydroquinazolin-4 (1H)-ones catalyzed by heterogeneous metal–MWCNTs nanocomposites. Journal of Molecular Structure, 1072, 173-178.
[21]. Zhang, Z. H., Lu, H. Y., Yang, S. H., & Gao, J. W. (2010). Synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. Journal of Combinatorial Chemistry12(5), 643-646.
[22]. Karimi-Jaberi, Z., & Arjmandi, R. (2011). Acetic acid-promoted, efficient, one-pot synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones. Monatshefte für Chemie-Chemical Monthly, 142, 631-635.
[23]. Safaei‐Ghomi, J., & Teymuri, R. (2019). A three‐component process for the synthesis of 2, 3‐dihydroquinazolin‐4 (1H)‐one derivatives using nanosized nickel aluminate spinel crystals as highly efficient catalysts. Journal of the Chinese Chemical Society, 66(11), 1490-1498.
[24]. HShaterian, H. R., Oveisi, A. R., & Honarmand, M. (2010). Synthesis of 2, 3-dihydroquinazoline-4 (1 H)-ones. Synthetic Communications®40(8), 1231-1242.
[25]. Wang, S., Yin, S., Xia, S., Shi, Y., Tu, S., & Rong, L. (2012). An efficient synthesis of 3-benzylquinazolin-4 (1 H)-one derivatives under catalyst-free and solvent-free conditions. Green Chemistry Letters and Reviews, 5(4), 603-607.