Hydrothermal synthesis and characterization of Eu3+ and Nd3+- doped Bi2O3 nanomaterials


Article history:

Received: 15/Apr/2016

Received in revised form: 10/May/2016

Accepted: 20/May/2016


Bi2O3 nanomaterials doped with Eu3+ and Nd3+ ions have been synthesized by a simple hydrothermal process at 180 °C for 48 h. Bi(NO3)3.5H2O and KOH were used as raw materials. The as-prepared materials were characterized by X-ray diffraction (XRD). The data showed that the doped Bi2O3 materials were crystalized in a monoclinic crystal structure with space group of P21/c and cell parameters of a=5.8499 Å, b=8.1698 Å and c=7.5123 Å. The morphology of the obtained nanomaterials was investigated by field emission scanning electron microscope (FESEM). The morphology was remained unchanged after doping the rare elements into Bi2O3. However, different morphology of the compounds was achieved. The FESEM images showed that the materials were composed of micro-nano rods, nanoparticles and flower structures. Elemental analyses of the doped nanomaterials were performed by energy-dispersive X-ray spectrometry (EDS). Also cell parameter refinements and interplanar spacing (d) of the obtained materials were investigated.

Keywords:  Nanomaterials; Bismuth oxide; Neodymium; Europium; Hydrothermal method


[1] K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich and T. Brezesinski, Chem Mater, 22 (2010) 3079.
[2] J.-y. Xia, M.-t. Tang, C. Cui, S.-m. Jin and Y.-m. Chen, T. Nonferr. Metal. Soc, 22 (2012) 2289.
[3] A. Feldman, W.S. Brower Jr and D. Horowitz, Appl. Phys. Lett, 16 (1970) 201.
[4] A. Pan and A. Ghosh, J. Non Cryst. Solids, 271 (2000) 157.
[5] E.Y. Wang and K.A. Pandelišev, J. Appl. Phys, 52 (1981) 4818.
[6] M. Schuisky and A. Hårsta: Chem. Vap. Deposition, 2 (1996) 235.
[7] M. Yashima and D. Ishimura, Chem. Phys. Lett, 378 (2003) 395.
[8] F. Qin, H. Zhao, G. Li, H. Yang, J. Li, R. Wang, Y. Liu, J. Hu, H. Sun and R. Chen, Nanoscale, 6 (2014) 5402.
[9] A. Cabot, A. Marsal, J. Arbiol and J. Morante, Sens Actuators B chem, 99 (2004) 74.
[10] X. Gou, R. Li, G. Wang, Z. Chen and D. Wexler, Nanotech, 20 (2009) 495501.
[11] K.T. Lee, A.A. Lidie, S.Y. Jeon, G.T. Hitz, S.J. Song and E.D. Wachsman,  J. Mater. Chem.  A, 1 (2013) 6199.
[12] M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Dalton Trans, 42 (2013) 1047.
[13] S. Wu, J. Fang, X. Xu, Z. Liu, X. Zhu and W. Xu, Photochem. Photobio, 88 (2012) 1205.
[14] S. Wu, J. Fang, W. Xu and C. Cen, J. Chem. Tech. Biotech, 88 (2013)  1828.
[15] J. Krishna Reddy, B. Srinivas, V. Durga Kumari and M. Subrahmanyam, Chem. Cat. Chem, 1 (2009) 492.
[16] J. Zhang Li, J. Bo Zhong, J. Zeng, F. Mei Feng and J. Jin He, Mater. Sci. Sem. Proc, 16 (2013) 379.
[17] N.O. Kalaycioglu and E. Çırçır, Metal-Org. Nano-Metal Chem, 42 (2012) 398.
[18] A. Aytimur, İ. Taşçıoğlu, M. Arı, İ. Uslu, Y. Dağdemir, S. Durmuş and Ş. Altındal, J. sol-gel sci. tech, 66 (2013) 317.
[19] H. Liu, M. Luo, J. Hu, T. Zhou, R. Chen and J. Li, Appl. Catal. B: Env, 140 (2013) 141.
[20] S. Ohara and Y. Kuroiwa, Opt. Express, 17 (2009) 14104.
[21] P. Šulcová and E. Proklešková: J. Min. Met, Section B: Metallurgy, 44 (2008) 27.
[22] P. Šulcová, E. Proklešková, P. Bystrzycki and M. Trojan, J. Ther. Anal. Cal, 100 (2010) 65.
[23] İ. Taşçıoğlu, M. Arı, I. Uslu, S. Koçyiğit, Y. Dağdemir, V. Corumlu and Ş. Altındal, Ceram. Int, 38 (2012) 6455.
[24] J. Xie, X. Lü, M. Chen, G. Zhao, Y. Song and S. Lu, Dyes Pigment, 77 (2008) 43.
[25] Y. Dai and L. Yin, J. Alloy. Compd, 563 (2013) 80.
[26] T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian and S. Yoshikawa, Solid State Sci, 10 (2008) 20.
[27] B. Umesh, B. Eraiah, H. Nagabhushana, B. Nagabhushana, G. Nagaraja, C. Shivakumara and R. Chakradhar, J. Alloy. Comp, 509 (2011) 1146.
[28] R. Bazzi, M. Flores-Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W. Zhang, O. Tillement, E. Bernstein and P. Perriat, J. Lumin, 102 (2003) 445.
[29] C. Soliman, Neodymium oxide: Nucl Instrum Meth B, 251 (2006) 441.
[30] W. Que, C. Kam, Y. Zhou, Y. Lam and Y. Chan, J. Applied Phys, 90 (2001) 4865.
[31] A. Kosola, J. Päiväsaari, M. Putkonen and L. Niinistö, Thin Solid Films, 479 (2005) 152.
[32] M. Zawadzki and L. Kepiński, J. alloy. Comp, 380 (2004) 255.
[33] Z.-L. Wang, G.-R. Li, Y.-N. Ou, Z.-P. Feng, D.-L. Qu and Y.-X. Tong, J. Phys. Chem. C, 115 (2010) 351.
[34] H. Li, Y. Sheng, H. Zhang, J. Xue, K. Zheng, Q. Huo and H. Zou, Powder Tech,  212 (2011) 372.
[35] G. Wang, H. Zou, L. Gong, Z. Shi, X. Xu and Y. Sheng, Powder Tech, 258  (2014) 174.
[36] F. Ren and D. Chen, Powder Tech, 194 (2009) 187.
[37] G. Li, Y. Lai, W. Bao, L. Li, M. Li, S. Gan, T. Long and L. Zou, Powder Tech, 214 (2011) 211.
[38] S. Yilmaz, O. Turkoglu, M. Ari and I. Belenli, Cerâmica, 57 (2011) 185.
[39] A. Kar and A. Patra, J. Phys. Chem. C, 113 (2009) 4375.
[40] D. Ye, D. Li, W. Chen, Y. Shao, G. Xiao, M. Sun and X. Fu, Res. Chem. Int, 35 (2009) 675.
[41] T. Dong, Z. Li, Z. Ding, L. Wu, X. Wang and X. Fu, Mater. Res. Bul, 43 (2008) 1694.
[42] M. Behzad, M. sabaghian, S. M. Sajjadi, J. advan. Mater. Proc, 3 (2015) 65.
[43] Y. Li, M. Ge, J. Li, J. Wang and H. Zhang, Cryst. Eng. Comm, 13 (2011) 637.
[44] B. Zhaorigetu, G. Ridi and L. Min, J. alloy. Comp, 427 (2007) 235.