Evaluation of antidiabetic effects, antioxidant activities, and phytochemical components of oleo-gum resins from three Iranian plants

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Basic Sciences, Semnan University, Semnan, Iran

2 Medicinal Plants Research Center, Shahed University, Tehran, Iran

Abstract

Ferula latisecta, Dorema kopetdaghense, and Dorema ammoniacum oleo-gum resins are among the most valuable Iranian herbal products and have great potential to be exported abroad. This study aims to phytochemically investigate the antioxidant and antidiabetic effects of the mentioned oleo-gum resins. The hexane, ethyl acetate, and methanolic extracts of gums were prepared through a "sequential extraction" method. The antidiabetic effects of the extracts were evaluated on the basis of α-amylase and α-glycosidase enzyme inhibition methods. In addition, the antioxidant effects of the extracts were analyzed against DPPH free radicals. Besides, the phenolic and flavonoid compounds of the extracts were measured. The results showed that the hexane extract of D. ammoniacum gum had the highest inhibitory activity against α-glucosidase (92.99%). Also, the methanolic extract of this plant showed the highest inhibitory activity against α-amylase (50.84%). The hexane extract of D. ammoniacum gum has high antioxidant properties with an IC50 value of 40.85 μg/mL. Moreover, the hexane extract of D. ammoniacum gum has the highest amount of phenolic compounds with 530.52 mg of gallic acid/g of extract, among the others. According to the results, the gum of D. ammoniacum is rich of phenolic compounds and has high antioxidant and antidiabetic effects in comparison to common standards. So, this herbal product can be worthy of further investigation.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Asgary, S., Rahimi, P. A. R. I. V. A. S. H., Mahzoni, P., & Kabiri, N. A. J. M. E. H. (2010). Hypoglycemic effect of extract of Juglans regia L. leaves on alloxan-induced diabetic rats. Iranian Journal of Medicinal and Aromatic Plants26(1), 30-39.
[2] El-Kaissi, S., & Sherbeeni, S. (2011). Pharmacological management of type 2 diabetes mellitus: an update. Current diabetes reviews7(6), 392-405.
[3] Aghasi, M., Ghazi-Zahedi, S., Koohdani, F., Siassi, F., Nasli-Esfahani, E., Keshavarz, A., ... & Sotoudeh, G. (2018). The effects of green cardamom supplementation on blood glucose, lipids profile, oxidative stress, sirtuin-1 and irisin in type 2 diabetic patients: a study protocol for a randomized placebo-controlled clinical trial. BMC complementary and alternative medicine18(1), 1-6.
[4] Dehghan, H., Salehi, P., & Amiri, M. S. (2018). Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Industrial Crops and Products117, 303-309.
[5] Asano, N. (2009). Sugar-mimicking glycosidase inhibitors: bioactivity and application. Cellular and Molecular Life Sciences66, 1479-1492.
[6] Standl, E., & Schnell, O. (2012). Alpha-glucosidase inhibitors 2012–cardiovascular considerations and trial evaluation. Diabetes and Vascular Disease Research9(3), 163-169.
[7] Gao, H., Huang, Y. N., Xu, P. Y., & Kawabata, J. (2007). Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chemistry105(2), 628-634.
[8] Jin, H., Zhang, Y. J., Jiang, J. X., Zhu, L. Y., Chen, P., Li, J., & Yao, H. Y. (2013). Studies on the extraction of pumpkin components and their biological effects on blood glucose of diabetic mice. Journal of food and drug analysis21(2), 184-189.
[9] Jung, M., Park, M., Lee, H. C., Kang, Y. H., Kang, E. S., & Kim, S. K. (2006). Antidiabetic agents from medicinal plants. Current medicinal chemistry13(10), 1203-1218.
[10] de Torre, M. P., Cavero, R. Y., Calvo, M. I., & Vizmanos, J. L. (2019). A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants8(5), 142.
[11] Iranshahi, M., Amanolahi, F., & Schneider, B. (2012). New sesquiterpene coumarin from the roots of Ferula latisecta. Avicenna Journal of Phytomedicine2(3), 133.
[12] Iranshahi, M., Hassanzadeh-Khayat, M., Bazzaz, B. S. F., Sabeti, Z., & Enayati, F. (2008). High content of polysulphides in the volatile oil of Ferula latisecta Rech. F. et Aell. fruits and antimicrobial activity of the oil. Journal of Essential Oil Research20(2), 183-185.
[13] Iranshahi, M., Shaki, F., Mashlab, A., Porzel, A., & Wessjohann, L. A. (2007). Kopetdaghins a− E, sesquiterpene derivatives from the aerial parts and the roots of Dorema kopetdaghense. Journal of natural products70(8), 1240-1243.
[14] Zamani Taghizadeh Rabe, S., Iranshahi, M., Rastin, M., Zamani Taghizadeh Rabe, S., & Mahmoudi, M. (2015). Anti-inflammatory effect of new kopetdaghins A, C and E from Dorema kopetdaghense. Food and Agricultural Immunology26(3), 430-439.
[15] Mehrpour, M., Yousefi, M., AfzalAghaee, M., Rakhshandeh, H., Azizi, H., Hadianfar, A., ... & Bahrami-Taghanaki, H. (2020). Evaluation of Dorema Ammoniacum and Acupuncture's Therapeutic Effects in Patients With Ischemic Stroke: A Randomized Controlled Clinical Trial.
[16] Zibaee, E., Amiri, M. S., Boghrati, Z., Farhadi, F., Ramezani, M., Emami, S. A., & Sahebkar, A. (2020). Ethnomedicinal uses, phytochemistry and pharmacology of Dorema species (Apiaceae): a review. Journal of Pharmacopuncture23(3), 91.
[17] Dehghan, H., Sarrafi, Y., & Salehi, P. (2016). Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. Journal of food and drug analysis24(1), 179-188.
[18] Bahrami Samani, L., Fooladgar, M., & Amjad, L. (2015) Investigation of storage time effect on phytochemical properties of Artemisia deserti, Applied Chemistry, 10(35), 111-130. (in persion)
[19] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry31(3), 426-428.
[20] McCue, P., KWON, Y. I., & Shetty, K. (2005). Anti‐amylase, anti‐glucosidase and anti‐angiotensin i‐converting enzyme potential of selected foods. Journal of food biochemistry29(3), 278-294.
[21] Dehghan, H., Sarrafi, Y., Salehi, P., & Nejad Ebrahimi, S. (2017). α-Glucosidase inhibitory and antioxidant activity of furanocoumarins from Heracleum persicum. Medicinal Chemistry Research26, 849-855.
[22] Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry40(6), 945-948.
[23] Dehghan, H., & Sadani, S. (2018). Antioxidant activity and phenolic content of the fractions from some Iranian antidiabetic plants. ASAG2, 73-77.
[24] Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.
[25] Mohadjerani, M., & Pakzad, K. (2013). Evaluation of total phenolic content and antioxidant activity of Nelumbo nucifera seed from north of Iran. Applied Chemistry7(25), 45-49.
[26] Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis10(3).
[27] Ordonez, A. A. L., Gomez, J. D., & Vattuone, M. A. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food chemistry97(3), 452-458.