Synthesis, characterization and application of alumina nanoparticles for photocatalytic degradation of congo red dye

Document Type : Original Article

Authors

Abstract

In this study, alumina (Al2O3)  nanoparticles were synthesized by a sol-gel method. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) coupled with energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR), adsorption-desorption N2 isotherms (BET) and (BJH). Although, alumina was known as an insulator, results in this work were shown, synthesized metal oxide, act as a suitable photocatalyst. The effect of various parameters including irradiation time, pH and catalyst dosage on the degradation of congo red dye was investigated. The best results were obtained under visible light radiation and at irradiation time 30 minute, pH=4, 0.1 g catalyst.

Keywords


[1] A. Nezamzadeh-Ejhieh, N. Moazzeni, Journal of Industrial and Engineering,19 (2013) 1433.
[2] M. Safari, M. Nikazar, M. Dadvar, Journal of Industrial and Engineering,19 (2013) 1697.
[3] A. Lopes, S. Martins, A. Morao, M. Magrinho, I. Goncalves, Portugaliae Electrochimica Acta,22 (2004) 279.
[4] M. M. Tauber, G. M. Gubitz, A. Rehorek, Bioresource Technology, 99 (2008) 4213.
[5] M. Khadhraoui, H. Trabelsi, M. Ksibi, S. Bouguerra, B. Elleuch, Journal of Hazardous Materials, 161 (2009) 974.
[6] G. K. Parshettia, A. A. Telkeb, D. C. Kalyanib, S. P. Govindwarb,  Journal of Hazardous Materials, 176 (2010) 503.
[7] C. Namasivayam, D. Kavitha, Dyes and Pigments, 54 (2002) 47.
[8] M. K. Purkait, A. Maitti, S. Das Gupta, S. De, Journal of Hazard Mater, 145 (2007) 287.
[9] G. Crini, Bioresour Technol, 97 (2006) 1061.
[10] M. R. Hffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chemical Reviews, 95 (1995) 69.
[11] X. L. Bai, N. Pan, X. P. Wang, H. Q. Wang, Chinese Journal of Chemical Physics, 21 (2008) 81.
[12] W. Wang, J. Bi, L. Wu, Z. Li, X. Wamg, X. Fu, Nano Technology, 19 (2008) 502.
[13] N. Daneshva, D. Salari, A. R. J, Khataee, Journal of Photochemistry, 162 (2004) 317.
[14] N. Daneshva, N. Modirshahla, M. Behnejadi, Journal of Hazardous Materials, 143 (2007) 95.
[15] N. Daneshva, M. H. Rasouli fard, A. R. Khataee, H. Hoesseinzadeh, Journal of Hazardous Materials, 143 (2007) 95.
[16] S. Sharifat, H. Zolqarnain, A. Hamidi Fallahi, Journal of Applied Chemistry, 9 (2015) 103.
[17] T. Poursaberi, H. Ghanbar Nejad, M. R. Shoja, M. Bahari Yamchlv, Journal of Applied Chemistry, 8 (2013) 9.
[18] Z. Monsaf Khoshhesab, K. Gonbadi, Journal of Applied Chemistry, 9 (2014) 31.
[19] B. Khodadadi, Journal of Applied Chemistry, 8 (2013) 61.
[20] J. Miao, A. Xie, S. Li, F. Huang, J. Cao, Y. Shen, Applied Surface Science, 360 (2016) 594.
[21] N. Guy, S. Cakar, M. Ozacar, Journal of Colloid and Interface Science, 466 (2016) 128.
[22] S. Shukla, S. Chaudhary, A. Umar, G. R. Chaudhary, S. K. Mehta, Chemical Engineering Journal, 288 (2016) 423.
[23] H. Xiao, F. Qu, A. Umar, X. Wu, Materials Research Bulletin, 74 (2016) 284.
[24] A. Mayoufi, M. Faouzi Nsib, O. Ahmed, A. Houas, Comptes Rendus Chimie, 18 (2015) 875.
[25] E. S. Aazam, Journal of Alloys and Compounds, 644 (2015) 1.
[26] D. Ljubas, G. Smoljanic, H. Juretic, Journal of Environmental Management, 161 (2015) 83.
[27] K. Vignesh, R. Priyanka, M. Rajarajan, A. Suganthi, Materials Science and Engineering B, 178 (2013) 149.
[28] Y. Shavisi, S. Sharifnia, S. N. Hosseini, M. A. Khadivi, Journal of Industrial and Engineering Chemistry, 20 (2014) 278.
[29] A. Amirsalari, S. Farjami Shayesteh, Superlattices and Microstructures, 82 (2015) 507.