Effect of Mixing on Hydrothermal Synthesis of Nanostructured ZnAPSO-34 Catalyst Used in Conversion of Methanol to Ethylene and Propylene

Document Type : Original Article



Nanostructured ZnAPSO-34 catalyst was successfully synthesized in stirring and static conditions via hydrothermal method. Effect of difference rpm of stirring on the crystallinity, morphology, surface area and catalytic performance of ZnAPSO-34 were investigated. Synthesized catalysts were characterized by various methods such as XRD, FESEM, BET and FTIR techniques.  By increasing of stirring rpm, relative crystallinity initially increased and then reduced. By using of hydrothermal method under stirred conditions, nanoparticles of ZnAPSO-34 with narrow particle size distribution were produced. The synthesized catalysts were applied in methanol to ethylene and propylene process and effect of synthesis conditions on catalytic performance was investigated. The synthesized sample at 300 rpm exhibited the longer lifetime than the other samples. Moreover, methane formation for this sample was low.


[1] E. Aghaei and M. Haghighi, Powder Technology, 269 (2015), 358-370.
[2] M. Charghand, M. Haghighi, S. Saedy and S. Aghamohammadi, Advanced Powder Technology, 25 (2014), 1728-1736.
[3] M. Charghand, M. Haghighi and S. Aghamohammadi, Ultrasonics Sonochemistry, 21 (2014), 1827-1838.
[4] J.M. Campelo, F. Lafont, J.M. Marinas and M. Ojeda, Applied Catalysis A: General, 192 (2000), 85-96.
[5] P. Sadeghpour and M. Haghighi, Particuology, 19 (2015), 69-81.
[6] S. Aghamohammadi and M. Haghighi, Chemical Engineering Journal 264 (2015), 359-375.
[7] M. Popova, C. Minchev and V. Kanazirev, Applied Catalysis A: General, 169 (1998), 227-235.
[8] M.A. Djieugoue, A.M. Prakash and L. Kevan, Journal of Physical Chemistry B, 104 (2000), 6452-6461.
[9] J.F. Denayer, L.I. Devriese, S. Couck, J. Martens, R. Singh, P.A. Webley and G. Baron, The Journal of Physical Chemistry C, 112 (2008), 16593-16599.
[10] D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B.-L. Su and Z. Liu, Microporous and Mesoporous Materials, 116 (2008), 684-692.
[11] Z. Yan, B. Chen and Y. Huang, Solid State Nuclear Magnetic Resonance, 35 (2009), 49-60.
[12] S. Aghamohammadi, M. Haghighi and M. Charghand, Materials Research Bulletin, 50 (2014), 462-475.
[13] E. Aghaei and M. Haghighi, Journal of Porous Materials, 22 (2015), 187-200.
[14] P. Sadeghpour and M. Haghighi, Iranian Journal of Chemistry & Chemical Engineering, 34 (2015), 11-27.
[15] M. Hartmann and L. Kevan, Chemical reviews, 99 (1999), 635-664.
[16] J.P. Lourenço, M.F. Ribeiro, C. Borges, J. Rocha, B. Onida, E. Garrone and Z. Gabelica, Microporous and Mesoporous Materials, 38 (2000), 267-278.
[17] D. Escalante, B. Méndez, G. Hernández, C.M. López, F.J. Machado, J. Goldwasser and M.M. Ramírez de Agudelo, Catalysis Letters, 47 (1997), 229-233.
[18] I. Güray, J. Warzywoda, N. Baç and A. Sacco, Microporous and Mesoporous Materials, 3 (1999), 241-251.
[19] M. Occelli, G. Schwering, C. Fild, H. Eckert, A. Auroux and P. Iyer, Microporous and Mesoporous Materials, 34 (2000), 15-22.
[20] C.-Y. Mou and H.-P. Lin, Pure and Applied Chemistry, 72 (2000), 137-146.
[21] S. Aruna, S. Tirosh and A. Zaban, Journal of Materials Chemistry, 10 (2000), 2388-2391.
[22] N. Yamasaki, Q. Feng and X. Lan, Metallurgical and Materials Transactions B, 28 (1997), 33-37.
[23] Z. Zhu, M. Hartmann and L. Kevan, Chemistry of materials, 12 (2000), 2781-2787.
[24] Y.-J. Lee, S.-C. Baek and K.-W. Jun, Applied Catalysis A: General, 329 (2007), 130-136.
[25] L. Ye, F. Cao, W. Ying, D. Fang and Q. Sun, Journal of Porous Materials, 18 (2011), 225-232.
[26] Z. Lu, B. Jennifer, C. Donghan, N. Heng-Yong and H. Yining, The Journal of Physical Chemistry C, 115 (2011), 22309-22319.
[27] S. Ashtekar, S.V.V. Chilukuri and D.K. Chakrabarty, The Journal of Physical Chemistry, 98 (1994), 4878-4883.
[28] J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He and R. Zhai, Microporous and Mesoporous Materials, 53 (2002), 97-108.
[29] G. Liu, P. Tian, J. Li, D. Zhang, F. Zhou and Z. Liu, Microporous and Mesoporous Materials, 111 (2008), 143-149.
[30] S.M. Sajjadi, M. Haghighi, A. Alizadeh Eslami and F. Rahmani, J Sol-Gel Sci Technol, 67 (2013), 601-617.
[31] S. Aghamohammadi, M. Haghighi and S. Karimipour, Journal of Nanoscience and Nanotechnology, 13 (2013), 4872-4882.
[32] S. Saedy, M. Haghighi and M. Amirkhosrow, Particuology, 10 (2012), 729-736.
[33] K.-H. Schnabel, R. Fricke, I. Girnus, E. Jahn, E. Loffler, B. Parlitz and C. Peuker, Journal of the Chemical Society, Faraday Transactions, 87 (1991), 3569-3574.
[34] Z. Jamalzadeh, M. Haghighi and N. Asgari, Front. Environ. Sci. Eng., 7 (2013), 365-381.
[35] R. Khoshbin, M. Haghighi and N. Asgari, Materials Research Bulletin, 48 (2013), 767-777.
[36] M. Parvas, M. Haghighi and S. Allahyari, Environmental Technology, 35 (2014), 1140-1149.
[37] D.C. Clarence, Catalysis Reviews, 25 (1983), 1-118.
[38] Y. Hirota, K. Murata, M. Miyamoto, Y. Egashira and N. Nishiyama, Catalysis Letters, 140 (2010), 22-26.
]39 [ طیبه سوری، محمد حقیقی، سوگند آقامحمدی، سنتز غربال مولکولی SAPO-34 نانوساختار با بکارگیری قالب ترکیبی TEA و MOR با نسبت متغیر جهت استفاده در تبدیل متانول به اتیلن و پروپیلن، مجله علمی پژوهشی شیمی کاربردی، جلد ۸ شماره ۲۸ (1392) صفحات ۴۱-۵۶.