Fabrication of bioactive glass 58S/chitosan/zeolite 13X biocomposite using liquid phase method

Document Type : Original Article


Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O.Box 33535-111, Tehran, Iran


In this paper, a biocomposite was prepared by liquid phase method using 58S bioactive glass, high molecular weight chitosan and 13X zeolite. Physical characterization of the sample was performed using FT-IR, XRD, FE-SEM and EDX analysis. Results of FT-IR showed the presence of bands related to each component. Also, a comparison between FT-IR spectrum and XRD pattern of chitosan with the ones of prepared composite confirms the cross-linking of chitosan. The compressive strength of the sample was determined using the stress-strain diagram. According to this test, the compressive strength of the sample is 51.43 MPa. Also, the bioactivity of the biocomposite was studied in the simulated body fluid (SBF) at 37 ° C for 3 days, which showed a favorable bioactivity. The XRD pattern and FE-SEM images of the biocomposite before and after immersion in SBF solution show the growth of apatite on the biocomposite. The EDX spectrum also confirms the presence of all components. According to the previous studies, the composite prepared in this paper has more desirable properties than similar composites.


Main Subjects

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Van Nieuwenhuysen, J. P., D'Hoore, W., Carvalho, J., & Qvist, V. (2003). Long-term evaluation of extensive restorations in permanent teeth. Journal of dentistry31(6), 395-405.
[2] Zabrovsky, A., Beyth, N., Pietrokovski, Y., Ben-Gal, G., & Houri-Haddad, Y. (2017). Biocompatibility and functionality of dental restorative materials. In Biocompatibility of Dental Biomaterials (pp. 63-75). Woodhead Publishing..
[3] Dorozhkin, S. V. (2013). Calcium orthophosphates in dentistry. Journal of Materials Science: Materials in Medicine24(6), 1335-1363.
[4] Kulhan, T., Kamboj, A., Gupta, N. K., & Somani, N. (2022). Fabrication methods of glass fibre composites—a review. Functional Composites and Structures4(2), 022001.
[5] Okulus, Z., Héberger, K., & Voelkel, A. (2014). Sorption, solubility, and mass changes of hydroxyapatite‐containing composites in artificial saliva, food simulating solutions, tea, and coffee. Journal of Applied Polymer Science131(3).
[6] Holand, W., & Beall, G. H. (2019). Glass-ceramic technology. John Wiley & Sons.
[7] Chatzistavrou, X., Esteve, D., Hatzistavrou, E., Kontonasaki, E., Paraskevopoulos, K. M., & Boccaccini, A. R. (2010). Sol–gel based fabrication of novel glass-ceramics and composites for dental applications. Materials Science and Engineering: C30(5), 730-739.
[8] Hench, L. L., Xynos, I. D., & Polak, J. M. (2004). Bioactive glasses for in situ tissue regeneration. Journal of Biomaterials Science, Polymer Edition15(4), 543-562.
[9] Baino, F., Hamzehlou, S., & Kargozar, S. (2018). Bioactive glasses: where are we and where are we going?. Journal of functional biomaterials9(1), 25.
[10] Lemos, E. M., Patrício, P. S., & Pereira, M. M. (2016). 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties. Química Nova39, 462-466.
[11] Mota, J., Yu, N., Caridade, S. G., Luz, G. M., Gomes, M. E., Reis, R. L., ... & Mano, J. F. (2012). Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta biomaterialia8(11), 4173-4180.
[12] Madhi, A., & Shirkavand Hadavand, B. (2022). Chemical treatment of cotton fabric by eco-friendly carbon quantum dots-chitosan nanocomposites. Applied Chemistry17(63), 55-66  (in persian)
[13] Molaei, Z., Hamzehloueian, M., Ghasemi, K., & Soleimanian, F. (2019). Preparation of magnetic chitosan-graphene oxide-MnFe2O4 nanocomposite and its application for removal of naphthol blue black (NBB). Applied Chemistry14(52), 103-118. (in persian)
[14] Mansouri, M., Razmeh, H., Bayati, B., & Setarehshenas, N. (2020). Kinetics and thermodynamic studies of asphaltene adsorption onto Zeolite ZSM-5 nanoparticles. Applied Chemistry15(56), 267-284. (in persian)
[15] Mozayeni, A., & Mahmoudi, J. (2018). Synthesis and characterization of the composite of TiO2/Zeolite by sol-gel method and evaluation of its photocatalytic activity in the degradation of azo dyes from aqueous solutions. Applied Chemistry13(48), 325-338. (in persian)
[16] Lehman, S. E., & Larsen, S. C. (2014). Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environmental Science: Nano1(3), 200-213.
[17] Iqbal, N., Kadir, M. R. A., Mahmood, N. H. B., Yusoff, M. F. M., Siddique, J. A., Salim, N., ... & Kamarul, T. (2014). Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceramics International40(10), 16091-16097.
[18] Vukajlovic, D., Parker, J., Bretcanu, O., & Novakovic, K. (2019). Chitosan based polymer/bioglass composites for tissue engineering applications. Materials Science and Engineering: C96, 955-967.
[19] Posada-Carvajal, J. S., & Atehortúa-Soto, D. L. (2016). Fabrication of chitosan/bioactive glass composite scaffolds for medical applications. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 38-47.
[20] Miola, M., Verné, E., Ciraldo, F. E., Cordero-Arias, L., & Boccaccini, A. R. (2015). Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr. Frontiers in bioengineering and biotechnology3, 159.
[21] Taaca, K. L. M., & Vasquez Jr, M. R. (2017). Fabrication of Ag-exchanged zeolite/chitosan composites and effects of plasma treatment. Microporous and Mesoporous Materials241, 383-391.
[22] Yu, L., Gong, J., Zeng, C., & Zhang, L. (2013). Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Materials Science and Engineering: C33(7), 3652-3660.
[23] Dias, L. L., Mansur, H. S., Donnici, C. L., & Pereira, M. M. (2011). Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Biomatter1(1), 114-119.
[24] Gerhardt, L. C., & Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials3(7), 3867-3910.
[25] Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C58, 180-186.
[26] Moghaddam, N., Oroujzadeh, N., & Salehirad, A. (2022). Fabrication of bioactive glass/chitosan/zeolite bio-nanocomposite: Influence of synthetic route on structural and mechanical properties. Materials Chemistry and Physics278, 125708.
[27] Li, B., Shan, C. L., Zhou, Q., Fang, Y., Wang, Y. L., Xu, F., ... & Sun, G. C. (2013). Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine drugs11(5), 1534-1552.
[28] Li, W., Ding, Y., Yu, S., Yao, Q., & Boccaccini, A. R. (2015). Multifunctional chitosan-45S5 bioactive glass-poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microsphere composite membranes for guided tissue/bone regeneration. ACS applied materials & interfaces7(37), 20845-20854.
[29] Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian journal of bioorganic chemistry35, 360-369.
[30] Morsy, R. A., Beherei, H., Ellithy, M., Tarek, H. E., & Mabrouk, M. (2019). The odontogenic performance of human dental pulp stem cell in 3-dimensional chitosan and nano-bioactive glass-based scaffold material with different pores size. Journal of The Arab Society for Medical Research14(2), 82.
[31] Lim, S. H., & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate research339(2), 313-319.
[32] Bakatula, E. N., Mosai, A. K., & Tutu, H. (2015). Removal of uranium from aqueous solutions using ammonium-modified zeolite. South African Journal of Chemistry68, 165-171.
[33] Mozgawa, W., Krol, M., & Barczyk, K. (2011). FT-IR studies of zeolites from different structural groups. Chemik65(7), 667-674.
[34] Islam, N., Dmour, I., & Taha, M. O. (2019). Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon5(5), e01684.
[35] Kumar, R. S., Ravikumar, N., Kavitha, S., Mahalaxmi, S., Jayasree, R., Kumar, T. S., & Haneesh, M. (2017). Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release. International journal of biological macromolecules104, 1860-1865.
[36] Schickle, K., Zurlinden, K., Bergmann, C., Lindner, M., Kirsten, A., Laub, M., ... & Fischer, H. (2011). Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. Journal of Materials Science: Materials in Medicine22, 763-771.
[37] Ramakrishna, C., Saini, B. K., Racharla, K., Gujarathi, S., Sridara, C. S., Gupta, A., ... & Rao, P. V. L. (2016). Rapid and complete degradation of sulfur mustard adsorbed on M/zeolite-13X supported (M= 5 wt% Mn, Fe, Co) metal oxide catalysts with ozone. RSC advances6(93), 90720-90731.
[38] Sowunmi, A. R., Folayan, C. O., Anafi, F. O., Ajayi, O. A., Omisanya, N. O., Obada, D. O., & Dodoo-Arhin, D. (2018). Dataset on the comparison of synthesized and commercial zeolites for potential solar adsorption refrigerating system. Data in brief20, 90-95.
[39] Faqhiri, H., Hannula, M., Kellomäki, M., Calejo, M. T., & Massera, J. (2019). Effect of melt-derived bioactive glass particles on the properties of chitosan scaffolds. Journal of Functional Biomaterials10(3), 38.
[40] Ekworapoj, P., Promajaree, P., Boonyarit, K., & Sritulanon, T. (2014). Antibacterial and mechanical properties of silver zeolite blended dental composite. Dental Materials, (30), e132.
[41] Vukajlovic, D., Parker, J., Bretcanu, O., & Novakovic, K. (2019). Chitosan based polymer/bioglass composites for tissue engineering applications. Materials Science and Engineering: C96, 955-967.
[42] Kuttappan, S., Mathew, D., & Nair, M. B. (2016). Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering-A mini review. International journal of biological macromolecules93, 1390-1401.
[43] Yang, J., Long, T., He, N. F., Guo, Y. P., Zhu, Z. A., & Ke, Q. F. (2014). Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications. Journal of materials chemistry B2(38), 6611-6618.
[44] Iqbal, N., Kadir, M. A., Iqbal, S., Abd Razak, S. I., Rafique, M. S., Bakhsheshi-Rad, H. R., ... & Abbas, A. A. (2016). Nano-hydroxyapatite reinforced zeolite ZSM composites: A comprehensive study on the structural and in vitro biological properties. Ceramics International42(6), 7175-7182.
[45] A Chandrasekar, A., Sagadevan, S., & Dakshnamoorthy, A. (2013). Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int. J. Phys. Sci8(32), 1639-1645.
[46] Shi, C., Hou, X., Zhao, D., Wang, H., Guo, R., & Zhou, Y. (2022). Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. Journal of the Mechanical Behavior of Biomedical Materials126, 105062.
[47] Manafi, S. A., Yazdani, B., Rahimiopour, M. R., Sadrnezhaad, S. K., Amin, M. H., & Razavi, M. (2008). Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition. Biomedical Materials3(2), 025002.