Symple synthesis of lead(II) oxide nanostructures based on spontaneous solution-solution transfer of NH3 gas

Document Type : Original Article

Authors

Abstract

In this study, lead(II) oxide nanostructures were prepared using lead(II) acetate trihydrate and urea as the precursors in the alkaline condition derived from an ammonia atmosphere, and at two temperatures, ambient and 70 °C. Moreover, the effect of urea on the structure, size and shape of the as-synthesized nanostructures was investigated. Further, X-ray diffraction (XRD) and Furrier transformation infra red spectroscopy (FT-IR) techniques were used in order to characterize the as-obtained nanostructures, and the scanning electron microscopy (SEM) images were applied for their size and morphological study.

Keywords


[1] L. Li, X. Zhua, D. Yang, L. Gao, J. Liu, R. Vasant Kumar, J. Yang, Hazardous Materials, 203– 204 (2012) 274.

[2] H.J. Terpstra, R.A. de Groot, C. Haas, Physical Review B, 52 (1995) 11690.

[3] R.C. Keezer, D.L. Bowman, J.H. Becker, Journal of Applied Physics, 39 (1968) 2062.

[5] I.Y.Y. Bu, T.H. Hu, Solar Energy, 130 (2016) 81.
[8] H. Karimi-Maleh, F. Tahernejad-Javazmi, A.A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosensors and Bioelectronics, 60 (2014) 1.
[9] H. Karimi-Maleh, P. Biparva, M. Hatami, Biosensors and Bioelectronics, 48 (2013)270.
]10[ م. بقایری، ب. ملکی، س. فرهادی، دانشگاه سمنان، مجله شیمی کاربردی، شماره 38 (1395) ص 101.
[11] D.M.S. Paqhaleh, L. Hashemi, V. Amani, A. Morsali, A.A. Aminjanov, Inorganica Chimica Acta 407 (2013) 1.

[12] K.N. Wong, P.S. Khiew, D. Isa, W.S. Chiu, Materials Letters, 128 (2014) 97.

[13] H. Sadeghzadeh, A. Morsali, Ultrasonics Sonochemistry, 18 (2011) 80.

[14] H. Sadeghzadeh, A. Morsali, P. Retailleau, Polyhedron, 29 (2010) 925.
[15] K. Konstantinov, S. H. Ng, J. Z. Wang, G. X. Wang, D. Wexler, H. K. Liu, Power Sources, 159 (2006) 241.
[16] S. Li, W. Yang, M. Chen, J. Gao, J. J. Kang, Y. Qi, Materials Chemistry and Physics, 90 (2005) 262.
[17] J. Wang, S. Zhong, K. Konstantinov, J. H. Ahn, H. K. Liu, S. X Dou, Journal of Metastable and Nanocrystalline Materials, 15 (2007) 367.
[18] M. A. Shah, Journal of Nanoscience and Nanotechnology, 1 (2006) 3.
[19] P. Sundaramoorthy, V. R. Giri Dev, M. R. Devi, Fibre & Textile Research, 37 (2012) 16.
[20] S.K. Pasha, V.S.V. Satyanarayana, A. Sivakumar, K. Chidambaram, L.J. Kennedy, Chinese Chemical Letters, 22 (2011) 891.
[21] V. B. Ashok, R. T. Dipak, K. U. Bhagwat, Chemistry, 9 (2012) 705.
[22] A. Shahrjerdi, S.S. Hosseiny Davarani, E. Najafi, M.M. Amini, Ultrasonics Sonochemistry, 22 (2015) 382.
[23] Y. Hanifehpour, A. Morsali, B. Mirtamizdoust, S.W. Joo, Journal of Molecular Structure, 1079 (2015) 67.
[24] H. Sadeghzadeh, A. Morsali, V.T. Yilmaz, O. Büyükgüngör, Inorganica Chimica Acta, 363 (2010) 841.
[25] B.S. Zou, V.V. Volkov, Chemistry of Materials,11 (1999)3037.
[26] B. Ji, L. Gao, Materials Chemistry and Physics, 100 (2006) 351.
[27] K.C. Chen, C.W. Wang, Y.I. Lee, H.G. Liu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 373 (2011) 124.
[28] J.P. Samberg, A. Kajbafvala, A. Koolivand, Materials Research Bulletin ,51 (2014) 356.
[29] Q. Wang, X. Sun, Sh. Luo, L. Sun, X. Wu, M. Cao, Ch. Hu, Crystal Growth & Design, 7 (2007) 2665.
[30] H. Wang, Modern Applied Science, 4 (2010) 116.
[31] A. Aslani, A. Morsali, M. Zeller, Solid State Sciences, 10 (2008) 1591.
[32] L. Li, Y. Hu, X. Zhu, D. Yang, Q. Wang, J. Liu, R.V. Kumar, J. Yang, Materials Research Bulletin, 48 (2013) 1700.
[33] M.J. Soltanian Fard, F. Rastaghi, Journal of Molecular Structure, 1063 (2014) 289.
[34] A. Morsali, A. Panjehpour, Inorganica Chimica Acta, 391 (2012) 210.

[35] F. Behnoudnia, H. Dehghani, Inorganic Chemistry, 24 (2012) 32.

[36] M. S. Refat, S. M. Teleb, S. A. Sadeek, Spectrochimica Acta Part A, 60 (2004) 2803.