Chemiluminescence determination of pethidine hydrochloride and thebaine alkaloides

Document Type : Original Article


Department of Chemistry, Faculty of Basic Sciences, Golestan University, Gorgan, Iran


The aim of this work was finding new flurescent dyes as sensitizers for chemiluminescence (CL) determination some of narcotics. In this way 6 different dyes incloding rhodamine 6G, brilliant blue, orange G, chromatrope, eosin‌‌Y and [Ru(phen)3]2+ and 14 drugs incloding pethidine hydrochloride, thebaine, dextromethorphan, acetaminophen, codeine, oxymorphone, oxycodone, morphine, pholcodine, naltrexone, buprenorphine, methadone, tramadol, diphenoxylate were investigated. In the preliminary experiments, we found that pethidine hydrochloride in CL system of [Ru(phen)3]2+- Ce(IV) and thebaine in CL system of rhodamine 6G- Ce(IV) could be determined. After optimizing the important variables, linear dynamic range for pethidine hydrochloride and thebaine were 5.6×10-7 to 1.4×10-3 mol L-1 and 1.0×10-5 to 4.0×10-4 mol L-1 and limit of detection were 7.1×10-8 mol L-1 and 4.3×10-6 mol L-1, respectively. The percent of relative standard deviation for pethidine hydrochloride and thebaine were 5.7 and 4.0%, respectively.


Main Subjects

This is an open access article under the CC-BY-SA 4.0 license.(

[1] Adcock, J. L., Barrow, C. J., Barnett, N. W., Conlan, X. A., Hogan, C. F., & Francis, P. S. (2011). Chemiluminescence and electrochemiluminescence detection of controlled drugs. Drug testing and analysis, 3(3), 145-160.
[2] Azad, M. A. K., Ohira, S.-I., & Toda, K. (2006). Single column trapping/separation and chemiluminescence detection for on-site measurement of methyl mercaptan and dimethyl sulfide. Analytical chemistry, 78(17), 6252-6259.
[3] Barnett, N., Hindson, B., Lewis, S., & Purcell, S. (1998). Determination of codeine, 6-methoxycodeine and thebaine using capillary electrophoresis with tris (2, 2′-bipyridyl) ruthenium (II) chemiluminescence detection. Analytical Communications, 35(10), 321-324.
[4] Bolton, E., & Richter, M. M. (2001). Chemiluminescence of Tris (2, 2'-bipyridyl) ruthenium (II): a glowing experience. Journal of Chemical Education, 78(1), 47.
[5] Cao, W., Yang, J. H., Sun, C. X., Zhang, Z. J., & Gao, Q. F. (2005). Flow‐injection–chemiluminescence method for the determination of penicillin G potassium. Luminescence: The journal of biological and chemical luminescence, 20(4‐5), 238-242.
[6] Chen, D., Wang, H., Zhang, Z., Ci, L., & Zhang, X. (2011). Chemiluminescence determination of cefotaxime sodium with flow-injection analysis of cerium (IV)–rhodamine 6G system and its application to the binding study of cefotaxime sodium to protein with on-line microdialysis sampling. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1), 553-557.
[7] Chen, G., & Huang, C. (1988). A study of the chemiluminescence of some acidic triphenylmethane dyes. Talanta, 35(8), 625-631.
[8] Chen, X., & SATo, M. (1994). High-performance liquid chromatographic determination of ascorbic acid in soft drinks and apple juice using tris (2, 2′-bipyridine) ruthenium (II) electrochemiluminescence. Analytical sciences, 11(5), 749-754.
[9] Christie, R. (2014). Colour chemistry: Royal society of chemistry.
[10] Codeine, P., Brands, A. C., ULC, H. N. Z., & Brands, C. Medicines Adverse Reactions Committee.
[11] Costin, J. W., Lewis, S. W., Purcell, S. D., Waddell, L. R., Francis, P. S., & Barnett, N. W. (2007). Rapid determination of Papaver somniferum alkaloids in process streams using monolithic column high-performance liquid chromatography with chemiluminescence detection. Analytica chimica acta, 597(1), 19-23.
[12] Cui, H., Zhang, Q., Myint, A., Ge, X., & Liu, L. (2006). Chemiluminescence of cerium (IV)–rhodamine 6G–phenolic compound system. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3), 238-245.
[13] Delouei, N. J., Mokhtari, A., & Jamali, M. R. (2017). Determination of pholcodine in syrups and human plasma using the chemiluminescence system of tris (1, 10 phenanthroline) ruthenium (II) and acidic Ce (IV). Luminescence, 32(3), 387-393.
[14] Ensafi, A. A., Hasanpour, F., Khayamian, T., Mokhtari, A., & Taei, M. (2010). Simultaneous chemiluminescence determination of thebaine and noscapine using support vector machine regression. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(2), 867-871.
[15] Francis, P. S., & Adcock, J. L. (2005). Chemiluminescence methods for the determination of ofloxacin. Analytica chimica acta, 541(1-2), 3-12.
[16] Gemba, Y., Konishi, M., Sakata, T., & Okabayashi, Y. (2004). Determination of Oxycodone and Its Metabolite, Noroxycodone, in Human Plasma by HPLC with Post‐column Chemiluminescence Detection Using Electrogenerated Tris (2, 2′‐Bipyridyl) ruthenium (III). Journal of liquid chromatography & related technologies, 27(10), 1611-1626.
[17] Gerardi, R. D., Barnett, N. W., & Lewis, S. W. (1999). Analytical applications of tris (2, 2′-bipyridyl) ruthenium (III) as a chemiluminescent reagent. Analytica chimica acta, 378(1-3), 1-41.
[18] Greenwood, P. A., Merrin, C., McCreedy, T., & Greenway, G. M. (2002). Chemiluminescence μTAS for the determination of atropine and pethidine. Talanta, 56(3), 539-545.
[19] Guha, M. (2003). The Encyclopedia of Addictive Drugs. Reference Reviews, 17(7), 50-51.
[20] Han, H.-Y., He, Z.-K., & Zeng, Y.-E. (1999). A direct chemiluminescence method for the determination of nucleic acids using Ru (phen) 32+–Ce (IV) system. Fresenius' journal of analytical chemistry, 364, 782-785.
[21] Hara, M., Waraksa, C. C., Lean, J. T., Lewis, B. A., & Mallouk, T. E. (2000). Photocatalytic water oxidation in a buffered Tris (2, 2 ‘-bipyridyl) ruthenium complex-colloidal IrO2 system. The Journal of Physical Chemistry A, 104(22), 5275-5280.
[22] He, Z., & Gao, H. (1997). Simultaneous determination of oxalic and tartaric acid with chemiluminescence detection. Analyst, 122(11), 1343-1346.
[23] Hong, D., Jung, J., Park, J., Yamada, Y., Suenobu, T., Lee, Y.-M., Fukuzumi, S. (2012). Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy & Environmental Science, 5(6), 7606-7616.
[24] Huang, Y., & Chen, Z. (2002). Chemiluminescence of chlorpromazine hydrochloride based on cerium (IV) oxidation sensitized by rhodamine 6G. Talanta, 57(5), 953-959.
[25] Karim, M. M., Lee, S. H., Lee, H. S., Bae, Z. U., & Choi, K. H. (2006). A batch chemiluminescence determination of enoxacin using a Tris-(1, 10-phenanthroline) ruthenium (II)–cerium (IV) system. Journal of Fluorescence, 16, 535-540.
[26] Knight, A. W., & Greenway, G. M. (1995). Electrogenerated chemiluminescent determination of pyruvate using tris (2, 2′-bipyridine) ruthenium (II). Analyst, 120(10), 2543-2547.
[27] Lara, F. J., García-Campaña, A. M., & Aaron, J.-J. (2010). Analytical applications of photoinduced chemiluminescence in flow systems—A review. Analytica chimica acta, 679(1-2), 17-30.
[28] Latta, K. S., Ginsberg, B., & Barkin, R. L. (2002). Meperidine: a critical review. American journal of therapeutics, 9(1), 53-68.
[29] Li, Y., Zhang, Z., Li, J., Li, H., Chen, Y., & Liu, Z. (2011). Simple, stable and sensitive electrogenerated chemiluminescence detector for high-performance liquid chromatography and its application in direct determination of multiple fluoroquinolone residues in milk. Talanta, 84(3), 690-695.
[30] Littlejohn, D. (1994). JD Ingle Jr., and SR Crouch, Spectrochemical analysis: Prentice Hall, New Jersey, 1988 (ISBN 0-13-826876-2). xv+ 590 pp. price£ 24.95. In: Elsevier.
[31] Liu, W., & Huang, Y. (2004). Cerium (IV)-based chemiluminescence of phentolamine sensitized by rhodamine 6G. Analytica chimica acta, 506(2), 183-187.
[32] Mikuška, P., & Večeřa, Z. (1998). Application of gallic acid and xanthene dyes for determination of ozone in air with a chemiluminescence aerosol detector. Analytica chimica acta, 374(2-3), 297-302.
[33] Mokhtari, A., Ghazaeian, M., Maghsoudi, M., Keyvanfard, M., & Emami, I. (2015). Simple chemiluminescence determination of ketotifen using tris (1, 10 phenanthroline) ruthenium (II)‐Ce (IV) system. Luminescence, 30(7), 1094-1100.
[34] Mokhtari, A., Jafari Delouei, N., Keyvanfard, M., & Abdolhosseini, M. (2016). Multiway analysis applied to time‐resolved chemiluminescence for simultaneous determination of paracetamol and codeine in pharmaceuticals. Luminescence, 31(6), 1267-1276.
[35] Mokhtari, A., Keyvanfard, M., & Emami, I. (2015). Simultaneous chemiluminescence determination of citric acid and oxalic acid using multi-way partial least squares regression. RSC Advances, 5(37), 29214-29221.
[36] Mokhtari, A., Keyvanfard, M., Emami, I., Delouei, N. J., Pishkhani, H. F., Ebrahimi, A., & Karimian, H. (2016). Determination of Aspirin Using Chemiluminescence System of Tris (1, 10 phenanthroline) Ruthenium (II)-Cerium (IV). Journal of the Brazilian Chemical Society, 27, 566-574.
[37] Mokhtari, A., & Rezaei, B. (2011). Chemiluminescence determination of chlorpromazine and fluphenazine in pharmaceuticals and human serum using tris (1, 10-phenanthroline) ruthenium (II). Analytical Methods, 3(4), 996-1002.
[38] Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M., & Willner, I. (2004). Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical chemistry, 76(7), 2152-2156.
[39] Ram, S., & Siar, C. (2005). Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. International journal of oral and maxillofacial surgery, 34(5), 521-527.
[40] Ramachander, G., Williams, F. D., & Emele, J. F. (1977). Determination of dextrorphan in plasma and evaluation of bioavailability of dextromethorphan hydrobromide in humans. Journal of pharmaceutical sciences, 66(7), 1047-1048.
[41] Ramanathan, V., & Chandra, P. (1980). Recovery of thebaine and cryptopine from Indian opium. Bull Narc, 32(2), 49-63.
[42] Rezaei, B., Khayamian, T., & Mokhtari, A. (2009). Simultaneous determination of codeine and noscapine by flow-injection chemiluminescence method using N-PLS regression. Journal of pharmaceutical and biomedical analysis, 49(2), 234-239.
[43] Rezaei, B., & Mokhtari, A. (2007). A simple and rapid flow injection chemiluminescence determination of cysteine with Ru (phen) 32+–Ce (IV) system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 359-363.
[44] Sabnis, R. W. (2007). Handbook of acid-base indicators: CRC Press.
[45] Shahraki, A. D., Jabalameli, M., & Ghaedi, S. (2012). Pain relief after cesarean section: Oral methadone vs. intramuscular pethidine. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(2), 143.
[46] Song, Q., Greenway, G. M., & McCreedy, T. (2001). Tris (2, 2′-bipyridine) ruthenium (II) electrogenerated chemiluminescence of alkaloid type drugs with solid phase extraction sample preparation. Analyst, 126(1), 37-40.
[47] Tsuji, A., Stanley, P. E., Kricka, L. J., Maeda, M., & Matsumoto, M. (2005). Bioluminescence And Chemiluminescence: Progress And Perspectives-Proceedings Of The 13th International Symposium.
[48] Tsunoda, M., & Imai, K. (2005). Analytical applications of peroxyoxalate chemiluminescence. Analytica chimica acta, 541(1-2), 13-23.
[49] Vitha, M. F. (2018). Spectroscopy: Principles and instrumentation: John Wiley & Sons.
[50] Wallace, W. L., & Bard, A. J. (1979). Electrogenerated chemiluminescence. 35. temperature dependence of the ECL efficiency of Ru (bpy) 2+ in acetonitrile and evidence for very high excited state yields from electron transfer reactions. J. Phys. Chem, 83, 1350-1357.
[51] Wang, C.-Y., & Huang, H.-J. (2003). Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru (bpy) 32+–tripropylamine system. Analytica chimica acta, 498(1-2), 61-68.
[52] Wang, J. P., Li, N. B., & Luo, H. Q. (2008). Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium (IV) sensitized by rhodamine 6G. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(1), 204-208.
[53] Waseem, A., Yaqoob, M., & Nabi, A. (2008). Flow‐injection method for the determination of iodide/iodine using Ru (bpy) 33+–NADH chemiluminescence detection. Luminescence, 23(5), 316-320.
[54] Worsfold, P., Townshend, A., Poole, C. F., & Miró, M. (2019). Encyclopedia of analytical science: Elsevier.
[55] Xi, J., Ai, X., & He, Z. (2003). Chemiluminescence determination of barbituric acid using Ru (phen) 32+–Ce (IV) system. Talanta, 59(5), 1045-1051.
[56] Zhuang, Y., Zhang, D., & Ju, H. (2005). Sensitive determination of heroin based on electrogenerated chemiluminescence of tris (2, 2′-bipyridyl) ruthenium (II) immobilized in zeolite Y modified carbon paste electrode. Analyst, 130(4), 534-540.