Synthesis, characterization and optical studies of a novel diorganotin(IV) anthracene-9-carboxylate complex as a precursor for the fabrication of an organic light-emitting diode

Document Type : Original Article


1 Faculty of Chemistry, Payam Noor University, Tehran, Iran, PO Box: 19395-3697.

2 Faculty of Industrial Technologies, Urmia University of Technology, P. O. Box: 57155-419, Urmia, Iran.

3 Police technology and equipment department, Police Sciences and Social studies Institute, Tehran, Iran


A novel diorganotin(IV) complex, [(SnMe2)2(C15H9O2)(OCH3)(O)]2, with high optical properties was synthesized by an efficient method and fully characterized by elemental analysis and 1H, 119Sn NMR, IR and UV spectroscopies. It should be noted that the anthracene-9-carboxylic acid with high conjugated π-system and acceptable optical properties was utilized as a ligand for the preparation of this complex. The crystal structure of prepared complex was determined by single crystal X-ray diffraction. Crystal structure analysis of prepared compound displays the attendance of a tetranuclear, centrosymmetric dimeric, complex that crystallizes in the triclinic system with the space group of p_1^-. Thermogravimetric analysis (TGA) has been used for the investigation of the thermal behavior of prepared complex. The absorption and photoluminescence properties of the complex were investigated in solid state at room temperature. The investigation of the optical properties of complex shows that this complex can be as a good fluorescent material in the preparation of luminescence devices like light-emitting diodes. The metal complex significantly increased the optical efficiency and current density of the diode. Also, by adding metal to the ligand, the emission wavelength of the organic light emitting diode (OLED) was changed.


Main Subjects

This is an open access article under the CC-BY-SA 4.0 license.(

[1] Darzinezhad, K., Amini, M. M., Mohajerani, E., Fathollahi, M.R., Janghouri, M., Notash, B., Rostami, A. (2021). Architecture of New Rare Earth Metal Complexes as Precursors for the Fabrication of a New Class of OLEDs with Blue Shift Fluorescence. Zeitschrift für anorganische und allgemeine Chemie, 647(5), 456-462.
[2] Singh, D., Nishal, V., Bhagwan, S., Saini, R. K., Singh, I. (2018). Electroluminescent materials: Metal complexes of 8-hydroxyquinoline - A review. Materials & Design, 156, 215-228.
[3] Wang, T.T., Zeng, G.C., Zeng, H.P., Liu, P.-Y., Wang, R.X., Zhang, Z.J., Xiong, Y.L. (2009). Synthesis of light-emmting materials bis-[2′-2″-(9H-fluoren-2-yl)-vinyl-8-hydroxyquinoline] zinc(II) and bis-[2′-4″-(4,5-diphenyl-1H-imidazol-2-yl)styryl-8-hydroxyquinoline] zinc(II). Tetrahedron, 65(32), 6325-6329.
[4] Yang, X., Xu, X., Zhou, G. (2015). Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 3(5), 913-944.
[5] Miao, Y., Tao, P., Wang, K., Li, H., Zhao, B., Gao, L., Wang, H., Xu, B., Zhao, Q. (2017). Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors. ACS applied materials & interfaces, 9(43), 37873-37882.
[6] Shen, Z., Burrows, P. E., Bulović, V., Forrest, S. R., Thompson, M. E. (1997). Three-Color, Tunable, Organic Light-Emitting Devices. Science, 276(5321), 2009-2011.
[7] D'Andrade, B. W., Forrest, S. R. (2004). White Organic Light-Emitting Devices for Solid-State Lighting. Advanced Materials, 16(18), 1585-1595.
[8] Darzinezhad, K., Amini, M. M., Janghouri, M., Mohajerani, E., Fathollahi, M.-R., Jamshidi, Z., Janiak, C. (2020). Introducing Bluish-Green Light-Emitting Diodes (OLEDs) and Tuning Their Color Intensity by Uranium Complexes: Synthesis, Characterization, and Photoluminescence Studies of 8-Hydroxyquinoline Complexes of Uranium. Inorganic Chemistry, 59(23), 17028-17037.
[9] Kim, S., Lee, J. I., Yang, J., Shin, I.S., Earmme, T., Kang, M. S. (2020). A Guide for Realizing Efficient Polymer Light-Emitting Electrochemical Cells in a Single Active Layer Device Structure. ChemElectroChem, 7(1), 260-265.
[10] Meier, S. B., Tordera, D., Pertegás, A., Roldán-Carmona, C., Ortí, E., Bolink, H. J. (2014). Light-emitting electrochemical cells: recent progress and future prospects. Materials Today, 17(5), 217-223.
[11] Matsuki, K., Pu, J., Takenobu, T. (2020). Recent Progress on Light-Emitting Electrochemical Cells with Nonpolymeric Materials. Advanced Functional Materials, 30(33), 1908641.
[12] Kwon, D.K., Myoung, J.M. (2020). Ion gel-based flexible electrochemiluminescence full-color display with improved sky-blue emission using a mixed-metal chelate system. Chemical Engineering Journal, 379, 122347.
[13] Meng, X., Wang, P., Bai, R., He, L. (2020). Blue-green-emitting cationic iridium complexes with oxadiazole-type counter-anions and their use for highly efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 8(18), 6236-6244.
[14] Hamada, Y., Sano, T., Shibata, K., Kazuhiko Kuroki, K. K. (1995). Influence of the Emission Site on the Running Durability of Organic Electroluminescent Devices. Japanese Journal of Applied Physics, 34(7A), L824.
[15] Zeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S., Cheng, C. P. (2002). Preparation and structures of complexes of titanium(IV) and 8-hydroxyquinoline: TiQ2(Opri)2 and [TiQ2(μ-O)]4·6H2O. Polyhedron, 21(11), 1081-1087.
[16] Qin, Y., Pagba, C., Piotrowiak, P., Jäkle, F. (2004). Luminescent Organoboron Quinolate Polymers. Journal of the American Chemical Society, 126(22), 7015-7018.
[17] Brinkmann, M., Fite, B., Pratontep, S., Chaumont, C. (2004). Structure and Spectroscopic Properties of the Crystalline Structures Containing Meridional and Facial Isomers of Tris(8-hydroxyquinoline) Gallium(III). Chemistry of Materials, 16(23), 4627-4633.
[18] Burrows, P. E., Sapochak, L. S., McCarty, D. M., Forrest, S. R., Thompson, M. E. (1994). Metal ion dependent luminescence effects in metal tris‐quinolate organic heterojunction light emitting devices. Applied Physics Letters, 64(20), 2718-2720.
[19] Burrows, P. E., Shen, Z., Bulovic, V., McCarty, D. M., Forrest, S. R., Cronin, J. A., Thompson, M. E. (1996). Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices. Journal of Applied Physics, 79(10), 7991-8006.
[20] Sapochak, L. S., Benincasa, F. E., Schofield, R. S., Baker, J. L., Riccio, K. K. C., Fogarty, D., Kohlmann, H., Ferris, K. F., Burrows, P. E. (2002). Electroluminescent Zinc(II) Bis(8-hydroxyquinoline):  Structural Effects on Electronic States and Device Performance. Journal of the American Chemical Society, 124(21), 6119-6125.
[21] Shavaleev, N. M., Adams, H., Best, J., Edge, R., Navaratnam, S., Weinstein, J. A. (2006). Deep-Red Luminescence and Efficient Singlet Oxygen Generation by Cyclometalated Platinum(II) Complexes with 8-Hydroxyquinolines and Quinoline-8-thiol. Inorganic Chemistry, 45(23), 9410-9415.
[22] Kolb, A., Bissinger, P., Schmidbauer, H. (1993). Synthesis of arylbis[(triorganophosphine)gold(I)]oxonium tetrafluoroborates [RO(AuPR'3)2]+BF4-. Crystal structure of (8-quinolinyl)bis[(triphenylphosphine)gold(I)]oxonium tetrafluoroborate. Inorganic Chemistry, 32(23), 5132-5135.
[23] Fazaeli, Y., Amini, M. M., Najafi, E., Mohajerani, E., Janghouri, M., Jalilian, A., Ng, S. W. (2012). Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode. Journal of Fluorescence, 22(5), 1263-1270.
[24] Najafi, E., Amini, M. M., Khavasi, H. R., Ng, S. W. (2014). The effect of substituents of the 1,10-phenanthroline ligand on the nature of diorgnotin(IV) complexes formation. Journal of Organometallic Chemistry, 749, 370-378.
[25] Hodaie, M., Sadjadi, M. S., Amini, M. M., Najafi, E., Ng, S. W. (2016). Sonochemical Synthesis of a Nanocrystalline Tin(IV) Complex based on a Bulky Anthracene Carboxylate Ligand: Spectroscopic and Photophysical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 26(3), 500-511.
[26] Najafi, E., Kheirkhahi, M., Amini, M. M., Ng, S. W. (2013). Preparation of SnO2 Nanoparticles from a New Tin(IV) Complex: Spectroscopic and Photoluminescence Studies. Journal of Inorganic and Organometallic Polymers and Materials, 23(4), 1015-1022.
[27] Najafi, E., Amini, M. M., Janghouri, M., Mohajerani, E., Ng, S. W. (2014). Effects of the π-conjugation length of bipyridyl ligand on the photophysical properties of binuclear organotin(IV) complexes: Synthesis and characterization of dimethyltin(IV) complexes with bipyridyl. Inorganica Chimica Acta, 415, 52-60.
[28] Najafi, E., Amini, M. M., Mohajerani, E., Janghouri, M., Razavi, H., Khavasi, H. (2013). Fabrication of an organic light-emitting diode (OLED) from a two-dimensional lead(II) coordination polymer. Inorganica Chimica Acta, 399, 119-125.
[29] Janghouri, M., Mohajerani, E., Amini, M. M., Najafi, E., Hosseini, H. (2013). Yellow–Orange Electroluminescence of Novel Tin Complexes. Journal of Electronic Materials, 42(10), 2915-2925.
[30] Janghouri, M., Mohajerani, E., Amini, M. M., Najafi, E. (2014). Red organic light emitting device based on TPP and a new host material. Applied Physics A, 114(2), 445-451.
[31] Helfrich, W., Schneider, W. G. (1965). Recombination Radiation in Anthracene Crystals. Physical Review Letters, 14(7), 229-231.
[32] Helfrich, W., Schneider, W. G. (1966). Transients of Volume‐Controlled Current and of Recombination Radiation in Anthracene. The Journal of Chemical Physics, 44(8), 2902-2909.
[33] Werner, T. C., Hercules, D. M. (1969). Fluorescence of 9-anthroic acid and its esters. Environmental effects on excited-state behavior. The Journal of Physical Chemistry, 73(6), 2005-2011.
[34] Momiji, I., Yoza, C., Matsui, K. (2000). Fluorescence Spectra of 9-Anthracenecarboxylic Acid in Heterogeneous Environments. The Journal of Physical Chemistry B, 104(7), 1552-1555.
[35] Satoshi, S., Tsuneo, F., Nobuyuki, Y., Shigeru, K., Toshiko, I. (1978). Absorption and Fluorescence Spectra of Anthracenecarboxylic Acids. I. 9-Anthroic Acid and Formation of Excimer. Bulletin of the Chemical Society of Japan, 51(9), 2460-2466.
[36] Bazilevskaya, N., Cherkasov, A. (1965). Excited Dimers of Anthracene Derivatives. I. Optics and Spectroscopy, 18, 30.
[37] Ghoneim, N., Scherrer, D., Suppan, P. (1993). Dual luminescence, structure and excimers of 9-anthracene carboxylic acid. Journal of Luminescence, 55(5), 271-275.
[38] Frömmel, J., Wolff, T. (1998). Influence of Ionene Polyelectrolytes on Rheology and Photorheology of Aqueous Micellar Cetyltrimethylammonium Bromide Containing 9-Anthracene Carboxylic Acid. Journal of Colloid And Interface Science, 201(1), 86-92.
[39] Cohen, M. D., Ludmer, Z., Yakhot, V. (1975). The fluorescence properties of crystalline anthracenes and their dependence on the crystal structures. physica status solidi (b), 67(1), 51-61.
[40] Chen, C.L., Lin, M.-H., Hong, J.L. (2005). Hydrogen-bond interactions and photoluminescence properties of the miscible blends of 9-anthracenecarboxylic acid and polycyanate crosslinked resin. Synthetic Metals, 148(1), 61-64.
[41] Tang, C. W., VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915.
[42] Knox, J. E., Halls, M. D., Hratchian, H. P., Bernhard Schlegel, H. (2006). Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis. Physical Chemistry Chemical Physics, 8(12), 1371-1377.
[43] Brinkmann, M., Gadret, G., Muccini, M., Taliani, C., Masciocchi, N., Sironi, A. (2000). Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III). Journal of the American Chemical Society, 122(21), 5147-5157.
[44] Perrin, D., Armanego, W. (1980). Purification of Laboratory Chemicals, 2nd edn., Pergoman. New York.
[45] Sheldrick, G. (1997). Program for crystal structure solution and refinement. SHELXS-97 and SHELXL-97.
[46] Wang, J.J., Liu, C.S., Hu, T.L., Chang, Z., Li, C.Y., Yan, L.F., Chen, P.Q., Bu, X.H., Wu, Q., Zhao, L.J., Wang, Z., Zhang, X.Z. (2008). Zinc(ii) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. CrystEngComm, 10(6), 681-692.