Voltammetric Determination of Hydrochlorothiazide at SnO2-NiO Nanocomposite/Ionic Liquid Modified Carbon Paste Electrode

Document Type : Original Article

Authors

1 Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran

3 2Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran

Abstract

Herein, SnO2-NiO nanocomposite was prepared via a hydrothermal method and characterized by various techniques consisting X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS). The FESEM image showed particles with the size at about 20–130 nm in diameters. The electrochemical oxidation of hydrochlorothiazide (HCTZ) at a carbon paste electrode modified with SnO2-NiO nanocomposite and an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)) (SnO2-NiO/IL/CPE) was evaluated in phosphate buffer (PB) pH 8, by using cyclic voltammetry, linear sweep voltammetry, differential pulse voltammetry and chronoamperometry. The SnO2-NiO/IL/CPE indicated a good electrocatalytic behavior towards to oxidation of hydrochlorothiazide. The anodic peak currents were increased with the HCTZ concentration and indicated two linear dynamic range from 0.01 to 0.1 µM and 0.1 to 100 µM and a detection limit of 0.002 µM (S/N = 5) under the optimized conditions. The introduced electrochemical sensor was utilized for the determination of HCTZ in the pharmaceutical formulations and biological sample.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Dollery, C., (1999). Therapeutic Drugs, 2ed. Churchill Livingstone, UK.
[2] Kearney, M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J., (2005). Global burden of hypertension: analysis of worldwide, Lancet. 365, 217-223.
[3] Murillo Pulgarı́n, J. A., Alañón Molina A., & Pérez-Olivares Nieto, G., (2004). Determination of hydrochlorothiazide in pharmaceutical preparations by time resolved chemiluminescence, Analytica Chimica Acta, 518, 37-43
[4] Liu, F., Xua, Y., Gaob, S., Zhang, J., & Guo, Q., (2007). Determination of hydrochlorothiazide in human plasma by liquid chromatography/tandem mass spectrometry. Journal Pharmaceutical and Biomedical Analysis, 44, 1187- 1191.
[5] Baing, M. M., Vaidya, V. V., Sane, R. T., Menon, S. N., & Dalvi K., (2006). Simultaneous RP-LC determination of losartan potassium, ramipril, and hydrochlorothiazide in pharmaceutical preparations. Chromatographia, 64, 293-296.
 [6] Ramakrishna, N. V. S., Vishwottam, K. N., Manoj, S., Koteshwara, M., Wishu S.,  & Varma, D. P., (2005). Sensitive liquid chromatography-tandem mass spectrometry method for quantification of hydrochlorothiazide in human plasma, Biomedical Chromatography, 19, 751-760.
[7] Huang, T., He, Z., Yang, B., Shao, L., Zheng, X., & Duan, G., (2006). Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution, Journal of Pharmceutical and Biomedical Analysis, 41, 644-648.
[8] Erk, N. (2002). Simultaneous determination of fosinopril and hydrochlorothiazide in pharmaceutical formulations by spectrophotometric methods. Journal of Pharmceutical and Biomedical Analysis, 27, 901-912
[9] United States Pharmacopoeia (2009) United States Pharmacopoeial Convention. Rockville.
[10] Tian, F., Li, H,. Li, M., Li, C., Lei, Y., & Yang, B., (2017). Tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide, Microchimica Acta. 184, 1611–1619.
[11] Beitollahi, H., & Ghorbani, F., (2013). Benzoylferrocene-modified carbon nanotubes paste electrode as a voltammetric sensor for determination of hydrochlorothiazide in pharmaceutical and biological samples, Ionics. 19, 1673–1679.
[12] Eisele, A. P. P., Mansano, G. R., Oliveira, F. M. D., Casarin, J., Tarley, C. R. T., & Sartori, E. R., (2014). Simultaneous determination of hydrochlorothiazide and valsartan in combined dosage forms: Electroanalytical performance of cathodically pretreated borondoped diamond electrode, Journal of Electroanalytical Chemistry 732, 46–52.
[13] Absalan, G., Akhond, M., Karimi, R., & Ramezani, A. M., (2018). Simultaneous determination of captopril and hydrochlorothiazide by using a carbon ionic liquid electrode modified with copper hydroxide nanoparticles, Microchimica Acta, 185, 97-104.
[14] Beitollahi, H., Hamzavi, M., & Torkzadeh-Mahani, M., (2015). Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheets paste electrode, Materials Science and engineering  C. 52, 297–305.
[15] Purushothama, H. T., & Arthoba Nayaka Y., (2019). Pencil graphite electrode based electrochemical system for the investigation of antihypertensive drug hydrochlorothiazide: An electrochemical study, Chemical Physics Letters, 734, 136718- 136726.
[16] Opallo, M., & Lesniewski, A., (2011). A review on electrodes modified with ionic liquids, Journal of Electroanalytical Chemistry, 15, 2-16.
[17] Mohammadi, N., Najafi, M. & Bahrami Adeh, N., (2017). Highly defective mesoporous carbon – ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts, Sensor and Actuators. B Chem., 243, 838-846.
[18] Taei, M., Abedi F., (2017). Application of tin oxide- inverse spinel zinc stannate nanocomposite modified carbon paste electrode for the voltammetric determination of pyridium in pharmaceutical and biological samples, Applied Chemistry, 12(42), 35-52. (in Persian)
[19] Abolhasani, J., Samadi, A., Ghorbani -Kalhor, E., & Serrpoush Hamid, N., (2014). Colorimetric Determination of Thioamide Drugs Based on the Surface Plasmon Resonance Band of Colloidal Silver Nanoparticles, Applied Chemistry, 8 (29) 25-30. (in Persian)
[20] Naghian, E., & Najafi, M., (2018). Carbon paste electrodes modified with SnO2/CuS, SnO2/SnS and Cu@SnO2/SnS nanocomposites as voltammetric sensors for paracetamol and hydroquinone, Microchimimica Acta, 185, 406-413.
[21] Mousavi, S.-F., Alimoradi, M., Shirmardi, A., Zare‑Shahabad, V,. (2023). Synthesis and characterization of Co-Zeolite nanocomposite: electrocatalytic oxidation of methionine, Applied Chemistry, 17(65), 81-90. (in Persian)
[22] Sharma, A., Ahmed, A., Singh, A., Oruganti, S., Khosla, K. A., & Arya, S. (2021). Recent advances in tin oxide nanomaterials as electrochemical / chemiresistive sensors, Journal of the Electrochemal Society, 168, 027505- 027520.
[23] Sun,W., Wang, X., Wang,Y., Ju, X., Xu, L., Li, G., & Sun, Z,. (2013). Application of graphene–SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine, Electrochimica Acta, 87, 317–322.
[24] Karthika, A., Ramasamy Raja, V., Karuppasamy, P., Suganthi, A., & Rajarajan, M., (2020). A novel electrochemical sensor for determination of hydroquinone in water using FeWO4/SnO2 nanocomposite immobilized modified glassy carbon electrode, Journal of Electroanalytical Chemistry, 13, 4065-4081.
[25] Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S. G., Neri, G., & Sekar, C., (2016). Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 770, 23-32.
[26] Das, S., & Jayaraman, V., (2014). SnO2: a comprehensive review on structures and gas sensors, Progress in Materials Science , 66, 112–255.
[27] Varshney, B., Siddiqui, M. J., Hakeem Anwer, A., Zain Khan, M., Ahmed, F., Aljaafari, A., Hammud, H. H., & Azam, A. (2020). Synthesis of mesoporous SnO2/NiO nanocomposite using modified sol–gel method and its electrochemical performance as electrode material for supercapacitors, Scientific reports, 10, 11032-11044.
[28] Hassan, M. F.,  Rahman, M. M., Guo, Z., Chen, Z., & Liu, H., (2010). SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries, Journal of  Material. Chemistry, 20, 9707-9712.
[29] Bai, S., Liu, J., Guo, J., Luo, R., Li, D., Song, Y., Liu, C. C., & Chen, A., (2017). Facile preparation of SnO2/NiO composites and enhancement of sensing performance to NO2, Sensor and Actuators B Chem., 249, 22-29.
[30] Bard, A., Faulkner, J. L., (2001). Electrochemical methods fundamentals and application, 2nd edition. (John Willey & Sons, New York.
[31] Santos, M. C. G., Tarley, C. R. T., DellAntonio, L. H., Sartori, E. R., (2013). Evaluation of boron-doped diamond electrode for simultaneous voltammetric determination of hydrochlorothiazide and losartan in pharmaceutical formulations, Sensor and Actuators B Chem., 188, 263-270.
[32] Antoniadou, S., Jannakoudakis, A. D., & Theodoridou, E., (1989). Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro-oxidation of hydrazine, Synthetic Metals, 30 295-304.