[1] Khanmohammadi, F., Razavi Zadeh, B. M., & Azizi, S. N. (2023). Nanoparticles of SBA-15 synthesized from corn silica as an effective delivery system for valproic acid. Applied Chemistry, 17(65), 65-80.
[2] Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.d.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., & Shin, H. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(17), 1-33.
[3] Ali Mardan, Z., & Darabi, M. (2015). Synthesis of hydrogel nanocomposite biodegradable and pH-sensitive for targeted drug delivery. Applied Chemistry, 10(36), 29-44. doi: 10.22075/chem.2018.2624.
[4] Deng, Y., Zhang, X., Shen, H., He, Q., Wu, Z., Liao, W., & Yuan, M. (2020). Application of the nano-drug delivery system in treatment of cardiovascular diseases. Frontiers in bioengineering and biotechnology, 7(489), 1-18.
[5] Felice, B., Prabhakaran, M.P., Rodriguez, A.P., & Ramakrishna, S. (2014). Drug delivery vehicles on a nano-engineering perspective. Materials Science and Engineering: C, 41, 178-195.
[6] Ali Mardan, Z., & Darabi, M. (2015). Synthesis of hydrogel nanocomposite biodegradable and pH-sensitive for targeted drug delivery. Applied Chemistry, 10(36), 29-44.
[7] Koo, O.M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1(3), 193-212.
[8] Zhang, L., He, Y., Ma, G., Song, C., &Sun, H. (2012). Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly (ethylene glycol)-poly(ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine, 8 925-934.
[9] Haley, B., & Frenkel, E. (2008) Nanoparticles for drug delivery in cancer treatment. Urologic Oncology: Seminars and Original Investigations, 26, 57-64.
[10] Chavda, V.P. (2019). Chapter 4- Nanobased Nano Drug Delivery: A Comprehensive Review. Applications of Targeted Nano Drugs and Delivery Systems, 69-92.
[11] Sun, C., Lee, J.S.H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev, 60, 1252-1265.
[12] Martínez-Carmona, M., Gun’ko, Y., & Vallet-Regí, M. (2018). ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials, 8(268) 1-27.
[13] Kalpana, V.N., & Devi Rajeswari, V. (2018). A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018, 1-12.
[14] Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv, 9, 129449-12967.
[15] Ong, C. B., Ng L. Y., & Mohammad A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sust. Energ. Rev, 81, 536-551.
[16] Sahoo, R.K., Rani, S., Kumar,V., Gupta, U.(2021). 17 - Zinc oxide nanoparticles for bioimaging and drug delivery. Nanostructured Zinc Oxide, 483-509.
[17] Nikolova, N.P., Joshi, P.B., Chavali, M.S. (2023). Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics, 16, 1-48.
[18] Kayal, S., Ramanujan, R.V. (2010). Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Materials Science and Engineering: C, 30, 484-490.
[19] Akbarian, M., Mahjoub, S., Elahi, S.M., Zabihi, E., & Tashakkorian, H. (2020). Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids Surf B Biointerfaces, 186, 110686.
[20] Sathishkumar, P., Li, Z., Govindan, R., Jayakumar, R., Wang, C., & Long Gu, F. (2021). Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Applied Surface Science, 536, 147741.
[21] Adhikary, J., Chakraborty, P., Das, B., Datta, A., Dash, S.K., Roy, S., Chen, J.W., & Chattopadhyay, T. (2015). Preparation and characterization of ferromagnetic nickel oxide nanoparticles from three different precursors: application in drug delivery. RSC Advances, 5, 35917-35928.
[22] Manoukian, M.A.C., Migdal, C.W., Tembhekar, A.R., Harris, J.A., DeMesa, C. (2017). Topical administration of ibuprofen for injured athletes: considerations, formulations, and comparison to oral delivery. Sports Medicine-Open., 3(1),1-9.
[23] Anitha, A., Maya, S., Deepa, N., Chennazhi, K.P., Nair, S.V., Tamura H., & Jayakumar, R. (2011). Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydrat. Poly, 83, 452-461.
[24] Rahdar, A., Aliahmad, M., Azizi, Y. (2015). NiO Nanoparticles: Synthesis and Characterization. Journal of Nanostructures, 145-151.
[25] Srivastava, V., Gusain, D., Sharma, Y.C. (2013). Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO). Ceramics International, 39(8),9803-9808.
[26] Nyola, N., Govinda, S., Kumavat, M., Kalra, N., & Singh, G. (2012). Simultaneous estimation of famotidine and ibuprofen in pure and pharmaceutical dosage form by UV-Vis spectroscopy. International Research Journal of Pharmacy., 3(4) 277-280.