[1] Kirtane, A. R., Verma, M., Karandikar, P., Furin, J., Langer, R., & Traverso, G. (2021). Nanotechnology approaches for global infectious diseases. Nature Nanotechnology, 16(4), 369-384.
[2] Tao, H., Wu, T., Aldeghi, M., Wu, T. C., Aspuru-Guzik, A., & Kumacheva, E. (2021). Nanoparticle synthesis assisted by machine learning. Nature reviews materials, 6(8), 701-716.
[3] Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International journal of molecular sciences, 22(13), 7202.
[4] Manzano, M., & Vallet‐Regí, M. (2020). Mesoporous silica nanoparticles for drug delivery. Advanced functional materials, 30(2), 1902634.
[5] Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., . . . Camins, A. (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 10(2), 292.
[6] Zheng, W., Zhou, Q., & Yuan, C. (2021). Nanoparticles for oral cancer diagnosis and therapy. Bioinorganic Chemistry and Applications, 2021.
[7] Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336.
[8] Zhang, D., Ma, X.-l., Gu, Y., Huang, H., & Zhang, G.-w. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 8.
[9] Alphandéry, E. (2019). Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology, 13(5), 573-596.
[10] Ajinkya, N., Yu, X., Kaithal, P., Luo, H., Somani, P., & Ramakrishna, S. (2020). Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials, 13(20), 4644.
[11] Solovyova, A. Y., Elfimova, E. A., & Ivanov, A. O. (2021). Magnetic properties of textured ferrocomposite consisting of immobilized superparamagnetic nanoparticles. Physical Review E, 104(6), 064616.
[12] Surpi, A., Shelyakova, T., Murgia, M., Rivas, J., Piñeiro, Y., Greco, P., . . . Dediu, V. A. (2023). Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles. Scientific Reports, 13(1), 5301.
[13] Fadian Behbahani, N., & Buazar, F. (2019). Green synthesis and charactrization of magnetic Iron oxide nanoparticles using a marine Sargassum ilicifolium seaweed. Journal of Marine Science and Technology, 18(1), 25-32.
[14] Fardood, S. T., & Ramazani, A. (2018). Black tea extract mediated green synthesis of copper oxide nanoparticles. Journal of Applied Chemical Research, 12(2), 8-15.
[15] Lin, Y.-X., Zhang, S.-N., Xue, Z.-H., Zhang, J.-J., Su, H., Zhao, T.-J., . . . Chen, J.-S. (2019). Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nature Communications, 10(1), 4380.
[16] Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151.
[17] Noor, S., Shah, Z., Javed, A., Ali, A., Hussain, S. B., Zafar, S., . . . Muhammad, S. A. (2020). A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 174, 105966.
[18] Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., & Ishihara, M. (2019). Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. International journal of molecular sciences, 20(15), 3620.
[19] Guilger-Casagrande, M., & Lima, R. d. (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in Bioengineering and Biotechnology, 7, 287.
[20] Pryshchepa, O., Pomastowski, P., & Buszewski, B. (2020). Silver nanoparticles: Synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science, 284, 102246.
[21] Singh, J., Kumar, V., Kim, K.-H., & Rawat, M. (2019). Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environmental research, 177, 108569.
[22] Motavalizadehkakhky, A., Amarloo, F., & Zhiani, R. (2020). Investigating antioxidant properties and antimicrobial of nanocomposite films containing synthesized silver nanoparticles by green way in food packaging.
[23] Milla, P. G., Peñalver, R., & Nieto, G. (2021). Health benefits of uses and applications of Moringa oleifera in bakery products. Plants, 10(2), 318.
[24] Dhakad, A. K., Ikram, M., Sharma, S., Khan, S., Pandey, V. V., & Singh, A. (2019). Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytotherapy Research, 33(11), 2870-2903.
[25] Sultana, S. (2020). Nutritional and functional properties of Moringa oleifera. Metabolism open, 8, 100061.
[26] Ajagun‐Ogunleye, M. O., & Ebuehi, O. A. T. (2020). Evaluation of the anti‐aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. Journal of Food Biochemistry, 44(11), e13426.
[27] Valenga, M. G. P., Boschen, N. L., Rodrigues, P. R. P., & Maia, G. A. R. (2019). Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Industrial Crops and Products, 128, 331-337.
[28] Dehshahri, S., Wink, M., Afsharypuor, S., Asghari, G., & Mohagheghzadeh, A. (2012). Antioxidant activity of methanolic leaf extract of Moringa peregrina (Forssk.) Fiori. Research in pharmaceutical sciences, 7(2), 111.
[29] Peixoto, J. R. O., Silva, G. C., Costa, R. A., Vieira, G. H. F., Fonteles Filho, A. A., & dos Fernandes Vieira, R. H. S. (2011). In vitro antibacterial effect of aqueous and ethanolic Moringa leaf extracts. Asian Pacific journal of tropical medicine, 4(3), 201-204.
[30] Hassan, D. F., & Mahmood, M. B. (2019). Biosynthesis of iron oxide nanoparticles using Escherichia coli. Iraqi Journal of Science, 453-459.
[31] Akintelu, S. A., Oyebamiji, A. K., Olugbeko, S. C., & Latona, D. F. (2021). Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Current Research in Green and Sustainable Chemistry, 4, 100176.
[32] Singh, R., Hano, C., Nath, G., & Sharma, B. (2021). Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules, 11(2), 299.
[33] Mohd Yusof, H., Abdul Rahman, N. A., Mohamad, R., Zaidan, U. H., & Samsudin, A. A. (2020). Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Scientific Reports, 10(1), 19996.
[34] Dappula, S. S., Kandrakonda, Y. R., Shaik, J. B., Mothukuru, S. L., Lebaka, V. R., Mannarapu, M., & Amooru, G. D. (2023). Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: Characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer's properties. Journal of Molecular Structure, 1273, 134264.
[35] Brindhadevi, K., Samuel, M. S., Verma, T. N., Vasantharaj, S., Sathiyavimal, S., Saravanan, M., . . . Duc, P. A. (2020). Zinc oxide nanoparticles (ZnONPs)-induced antioxidants and photocatalytic degradation activity from hybrid grape pulp extract (HGPE). Biocatalysis and Agricultural Biotechnology, 28, 101730.
[36] Chandrasekaran, M., Kim, K. D., & Chun, S. C. (2020). Antibacterial activity of chitosan nanoparticles: A review. Processes, 8(9), 1173.
[37] Alshareef, F. (2021). Protocol to Evaluate Antibacterial Activity MIC, FIC and Time Kill Method. Acta Scientific MICROBIOLOGY (ISSN: 2581-3226), 4(5).
[38] Schwaminger, S. P., Syhr, C., & Berensmeier, S. (2020). Controlled synthesis of magnetic iron oxide nanoparticles: magnetite or maghemite? Crystals, 10(3), 214.
[39] Ssekatawa, K., Byarugaba, D. K., Angwe, M. K., Wampande, E. M., Ejobi, F., Nxumalo, E., . . . Kirabira, J. B. (2022). Phyto-mediated copper oxide nanoparticles for antibacterial, antioxidant and photocatalytic performances. Frontiers in Bioengineering and Biotechnology, 10, 820218.
[40] Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 611-621.
[41] Andhare, D. D., Patade, S. R., Kounsalye, J. S., & Jadhav, K. (2020). Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 583, 412051.
[42] Mali, S. C., Raj, S., & Trivedi, R. (2019). Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemistry and biophysics reports, 20, 100699.
[43] Deepty, M., Srinivas, C., Kumar, E. R., Mohan, N. K., Prajapat, C., Rao, T. C., . . . Sastry, D. (2019). XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceramics International, 45(6), 8037-8044.
[44] Kouhbanani, M. A. J., Beheshtkhoo, N., Taghizadeh, S., Amani, A. M., & Alimardani, V. (2019). One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(1), 015007.
[45] Islam, Z., Islam, S., Hossen, F., Mahtab-ul-Islam, K., Hasan, M. R., & Karim, R. (2021). Moringa oleifera is a prominent source of nutrients with potential health benefits. International Journal of Food Science, 2021.
[46] Pakade, V., Cukrowska, E., & Chimuka, L. (2013). Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African journal of science, 109(3), 1-5.
[47] Jahan, S., Shahjahan, M., Rasna, S., Aktar, M., Sultana, S., Ahmed, S., . . . Nahar, S. (2022). Antibacterial Effect of Moringa (Moringa oleifera) Leaf Ethanolic Extract Against Staphylococcus aureus and Escherichia coli. Mymensingh Medical Journal: MMJ, 31(4), 976-982.
[48] Jeevanandam, J., Krishnan, S., Hii, Y. S., Pan, S., Chan, Y. S., Acquah, C., . . . Rodrigues, J. (2022). Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. Journal of Nanostructure in Chemistry, 1-23.
[49] Islam, M. A., Jacob, M. V., & Antunes, E. (2021). A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281, 111918.
[50] Ahmed, R. H., & Mustafa, D. E. (2020). Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 10(1), 1-14.
[51] Karan, T., Gonulalan, Z., Erenler, R., Kolemen, U., & Eminagaoglu, O. (2023). Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. Journal of Molecular Structure, 136836.
[52] Castañeda-Aude, J. E., Morones-Ramírez, J. R., De Haro-Del Río, D. A., León-Buitimea, A., Barriga-Castro, E. D., & Escárcega-González, C. E. (2023). Ultra-Small Silver Nanoparticles: A Sustainable Green Synthesis Approach for Antibacterial Activity.
Antibiotics, 12(3), 574. Retrieved from
https://www.mdpi.com/2079-6382/12/3/574