Green synthesis of metal nanoparticles using aqueous extract of Moringa oleifera L. and investigating their antioxidant and antibacterial properties

Document Type : Original Article

Authors

1 Faculty of Agriculture and Natural Resources, Department of Plant Production and Genetics, Mohaghegh Ardabili University, Ardabil, Iran

2 Faculty of Pharmacy, Department of Pharmaceutics, University of Medical Sciences, Ardabil Branch, Ardabil, Iran

3 Faculty of Pharmacy, Department of Pharmacognosy, University of Medical Sciences, Ardabil Branch, Ardabil, Iran

Abstract

Moringa plant with the scientific name Moringa oleifera L. has important medicinal chemical compounds including flavonoids, which have antioxidant and anticancer properties. In this research, the properties of metal nanoparticles such as Iron, Copper, Zinc and Silver biosynthesized from the aqueous extract of M. oleifera plant have been studied, and then the antioxidant and antibacterial properties of the aqueous extract obtained from the aerial parts of this plant and the nanoparticles have been studied. The resulting metal was treated. The size and structure of metal nanoparticles obtained from Moringa plant aqueous extract were confirmed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The amount of antioxidant activity was measured using the DPPH method and the antibacterial properties of Moringa plant aqueous extract and metal nanoparticles obtained from it were measured with the help of disk diffusion and MIC method on two types of bacteria E. coli and S. aureus. The highest amount of antioxidant activity (89.23%) was related to copper nanoparticles at a concentration of 500 μg/ml. As well as E. coli bacteria were more sensitive than S. aureus to the same concentrations of the used treatments and had bigger inhibition zone. Additionally, the diameter of the inhibition zone (in millimeters) was also dependent on the concentration and grew with increasing concentration. The use of copper nanoparticles (especially in higher concentrations) has more antibacterial properties. In terms of survival rate and growth of cultured bacteria using the MIC method, the IC50 of E. coli bacteria compared to S. aureus bacteria in equal concentrations to the applied treatments was low, and the results demonstrated the high sensitivity of E. coli bacteria strain to S. aureus bacteria. According to the obtained results, a significant difference was observed between the aqueous extract obtained from the M. oleifera plant and the metal nanoparticles biosynthesized from it in terms of antioxidant and anticancer activity.

Keywords

Main Subjects


[1] Kirtane, A. R., Verma, M., Karandikar, P., Furin, J., Langer, R., & Traverso, G. (2021). Nanotechnology approaches for global infectious diseases. Nature Nanotechnology, 16(4), 369-384.
[2] Tao, H., Wu, T., Aldeghi, M., Wu, T. C., Aspuru-Guzik, A., & Kumacheva, E. (2021). Nanoparticle synthesis assisted by machine learning. Nature reviews materials, 6(8), 701-716.
[3] Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International journal of molecular sciences, 22(13), 7202.
[4] Manzano, M., & Vallet‐Regí, M. (2020). Mesoporous silica nanoparticles for drug delivery. Advanced functional materials, 30(2), 1902634.
[5] Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., . . . Camins, A. (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 10(2), 292.
[6] Zheng, W., Zhou, Q., & Yuan, C. (2021). Nanoparticles for oral cancer diagnosis and therapy. Bioinorganic Chemistry and Applications, 2021.
[7] Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336.
[8] Zhang, D., Ma, X.-l., Gu, Y., Huang, H., & Zhang, G.-w. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 8.
[9] Alphandéry, E. (2019). Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Nanotoxicology, 13(5), 573-596.
[10] Ajinkya, N., Yu, X., Kaithal, P., Luo, H., Somani, P., & Ramakrishna, S. (2020). Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials, 13(20), 4644.
[11] Solovyova, A. Y., Elfimova, E. A., & Ivanov, A. O. (2021). Magnetic properties of textured ferrocomposite consisting of immobilized superparamagnetic nanoparticles. Physical Review E, 104(6), 064616.
[12] Surpi, A., Shelyakova, T., Murgia, M., Rivas, J., Piñeiro, Y., Greco, P., . . . Dediu, V. A. (2023). Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles. Scientific Reports, 13(1), 5301.
[13] Fadian Behbahani, N., & Buazar, F. (2019). Green synthesis and charactrization of magnetic Iron oxide nanoparticles using a marine Sargassum ilicifolium seaweed. Journal of Marine Science and Technology, 18(1), 25-32.
[14] Fardood, S. T., & Ramazani, A. (2018). Black tea extract mediated green synthesis of copper oxide nanoparticles. Journal of Applied Chemical Research, 12(2), 8-15.
[15] Lin, Y.-X., Zhang, S.-N., Xue, Z.-H., Zhang, J.-J., Su, H., Zhao, T.-J., . . . Chen, J.-S. (2019). Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nature Communications, 10(1), 4380.
[16] Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151.
[17] Noor, S., Shah, Z., Javed, A., Ali, A., Hussain, S. B., Zafar, S., . . . Muhammad, S. A. (2020). A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 174, 105966.
[18] Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., & Ishihara, M. (2019). Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. International journal of molecular sciences, 20(15), 3620.
[19] Guilger-Casagrande, M., & Lima, R. d. (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in Bioengineering and Biotechnology, 7, 287.
[20] Pryshchepa, O., Pomastowski, P., & Buszewski, B. (2020). Silver nanoparticles: Synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science, 284, 102246.
[21] Singh, J., Kumar, V., Kim, K.-H., & Rawat, M. (2019). Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environmental research, 177, 108569.
[22] Motavalizadehkakhky, A., Amarloo, F., & Zhiani, R. (2020). Investigating antioxidant properties and antimicrobial of nanocomposite films containing synthesized silver nanoparticles by green way in food packaging.
[23] Milla, P. G., Peñalver, R., & Nieto, G. (2021). Health benefits of uses and applications of Moringa oleifera in bakery products. Plants, 10(2), 318.
[24] Dhakad, A. K., Ikram, M., Sharma, S., Khan, S., Pandey, V. V., & Singh, A. (2019). Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytotherapy Research, 33(11), 2870-2903.
[25] Sultana, S. (2020). Nutritional and functional properties of Moringa oleifera. Metabolism open, 8, 100061.
[26] Ajagun‐Ogunleye, M. O., & Ebuehi, O. A. T. (2020). Evaluation of the anti‐aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. Journal of Food Biochemistry, 44(11), e13426.
[27] Valenga, M. G. P., Boschen, N. L., Rodrigues, P. R. P., & Maia, G. A. R. (2019). Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Industrial Crops and Products, 128, 331-337.
[28] Dehshahri, S., Wink, M., Afsharypuor, S., Asghari, G., & Mohagheghzadeh, A. (2012). Antioxidant activity of methanolic leaf extract of Moringa peregrina (Forssk.) Fiori. Research in pharmaceutical sciences, 7(2), 111.
[29] Peixoto, J. R. O., Silva, G. C., Costa, R. A., Vieira, G. H. F., Fonteles Filho, A. A., & dos Fernandes Vieira, R. H. S. (2011). In vitro antibacterial effect of aqueous and ethanolic Moringa leaf extracts. Asian Pacific journal of tropical medicine, 4(3), 201-204.
[30] Hassan, D. F., & Mahmood, M. B. (2019). Biosynthesis of iron oxide nanoparticles using Escherichia coli. Iraqi Journal of Science, 453-459.
[31] Akintelu, S. A., Oyebamiji, A. K., Olugbeko, S. C., & Latona, D. F. (2021). Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Current Research in Green and Sustainable Chemistry, 4, 100176.
[32] Singh, R., Hano, C., Nath, G., & Sharma, B. (2021). Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules, 11(2), 299.
[33] Mohd Yusof, H., Abdul Rahman, N. A., Mohamad, R., Zaidan, U. H., & Samsudin, A. A. (2020). Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Scientific Reports, 10(1), 19996.
[34] Dappula, S. S., Kandrakonda, Y. R., Shaik, J. B., Mothukuru, S. L., Lebaka, V. R., Mannarapu, M., & Amooru, G. D. (2023). Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: Characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer's properties. Journal of Molecular Structure, 1273, 134264.
[35] Brindhadevi, K., Samuel, M. S., Verma, T. N., Vasantharaj, S., Sathiyavimal, S., Saravanan, M., . . . Duc, P. A. (2020). Zinc oxide nanoparticles (ZnONPs)-induced antioxidants and photocatalytic degradation activity from hybrid grape pulp extract (HGPE). Biocatalysis and Agricultural Biotechnology, 28, 101730.
[36] Chandrasekaran, M., Kim, K. D., & Chun, S. C. (2020). Antibacterial activity of chitosan nanoparticles: A review. Processes, 8(9), 1173.
[37] Alshareef, F. (2021). Protocol to Evaluate Antibacterial Activity MIC, FIC and Time Kill Method. Acta Scientific MICROBIOLOGY (ISSN: 2581-3226), 4(5).
[38] Schwaminger, S. P., Syhr, C., & Berensmeier, S. (2020). Controlled synthesis of magnetic iron oxide nanoparticles: magnetite or maghemite? Crystals, 10(3), 214.
[39] Ssekatawa, K., Byarugaba, D. K., Angwe, M. K., Wampande, E. M., Ejobi, F., Nxumalo, E., . . . Kirabira, J. B. (2022). Phyto-mediated copper oxide nanoparticles for antibacterial, antioxidant and photocatalytic performances. Frontiers in Bioengineering and Biotechnology, 10, 820218.
[40] Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 611-621.
[41] Andhare, D. D., Patade, S. R., Kounsalye, J. S., & Jadhav, K. (2020). Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 583, 412051.
[42] Mali, S. C., Raj, S., & Trivedi, R. (2019). Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemistry and biophysics reports, 20, 100699.
[43] Deepty, M., Srinivas, C., Kumar, E. R., Mohan, N. K., Prajapat, C., Rao, T. C., . . . Sastry, D. (2019). XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceramics International, 45(6), 8037-8044.
[44] Kouhbanani, M. A. J., Beheshtkhoo, N., Taghizadeh, S., Amani, A. M., & Alimardani, V. (2019). One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(1), 015007.
[45] Islam, Z., Islam, S., Hossen, F., Mahtab-ul-Islam, K., Hasan, M. R., & Karim, R. (2021). Moringa oleifera is a prominent source of nutrients with potential health benefits. International Journal of Food Science, 2021.
[46] Pakade, V., Cukrowska, E., & Chimuka, L. (2013). Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African journal of science, 109(3), 1-5.
[47] Jahan, S., Shahjahan, M., Rasna, S., Aktar, M., Sultana, S., Ahmed, S., . . . Nahar, S. (2022). Antibacterial Effect of Moringa (Moringa oleifera) Leaf Ethanolic Extract Against Staphylococcus aureus and Escherichia coli. Mymensingh Medical Journal: MMJ, 31(4), 976-982.
[48] Jeevanandam, J., Krishnan, S., Hii, Y. S., Pan, S., Chan, Y. S., Acquah, C., . . . Rodrigues, J. (2022). Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. Journal of Nanostructure in Chemistry, 1-23.
[49] Islam, M. A., Jacob, M. V., & Antunes, E. (2021). A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281, 111918.
[50] Ahmed, R. H., & Mustafa, D. E. (2020). Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 10(1), 1-14.
[51] Karan, T., Gonulalan, Z., Erenler, R., Kolemen, U., & Eminagaoglu, O. (2023). Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities. Journal of Molecular Structure, 136836.
[52] Castañeda-Aude, J. E., Morones-Ramírez, J. R., De Haro-Del Río, D. A., León-Buitimea, A., Barriga-Castro, E. D., & Escárcega-González, C. E. (2023). Ultra-Small Silver Nanoparticles: A Sustainable Green Synthesis Approach for Antibacterial Activity. Antibiotics, 12(3), 574. Retrieved from https://www.mdpi.com/2079-6382/12/3/574