Electrochemical determination of dopamine at the surface of carbon paste electrode modified with Ni-MWCNT/TiO2NPs nano-composite

Document Type : Original Article

Authors

Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.

Abstract

In this research, a simple and selective electrochemical sensor with high-sensitivity was proposed to detect dopamine. For this purpose, a nanocomposite consist of nickel-multiwalled carbon nanotubes and titanium dioxide nanoparticles was used to modify the carbon paste electrode. The surface morphology of the modified sensor was evaluated by field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FTIR). Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques were used to analyze of the proposed modified electrode electrochemical behavior and to characterize dopamine. The modified electrode used in this study showed an excellent electro-oxidation response to the presence of dopamine. In addition, to optimize the electrochemical sensor response, any change in the voltammetric behavior of dopamine under different pH and scan rates conditions were investigated and phosphate buffer solution was used for this purpose. Under optimal conditions, the dopamine electrocatalytic peak currents are linearly dependent on the dopamine concentration in the range of 0.3-100 µM and the detection limit of 11.68 nM was calculated for it. Also, electrochemical parameters such as the transferred electrons number and the electron transfer coefficient were estimated. The present study findings showed that the sensor has high sensitivity, low detection limit, fast response, long-term stability, significant repeatability and reproducibility, high selectivity and recovery, as well as excellent performance in analyt detection in the real samples, which proves that the proposed electrode can be used in food, medical and environmental applications. The proposed method is simple, fast and inexpensive and can be used as a valuable analytical tool in quality control of the pharmaceutical industry.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Hatefi-Mehrjardi, A., Beheshti-Marnani, A., & Askari, N. (2019). Cu+ 2 loaded" zeolite A"/nitrogen-doped graphene as a novel hybrid for simultaneous voltammetry determination of carbamazepine and dopamine. Materials Chemistry and Physics225, 137-144.
[2] de Fatima Ulbrich, K., Winiarski, J. P., Jost, C. L., & de Campos, C. E. M. (2020). Mechanochemical synthesis of a Ni3-xTe2 nanocrystalline composite and its application for simultaneous electrochemical detection of dopamine and adrenaline. Composites Part B: Engineering183, 107649.
[3] Ozoemena, O. C., Shai, L. J., Maphumulo, T., & Ozoemena, K. I. (2019). Electrochemical sensing of dopamine using onion-like carbons and their carbon nanofiber composites. Electrocatalysis10, 381-391.
[4] Thamilselvan, A., Manivel, P., Rajagopal, V., Nesakumar, N., & Suryanarayanan, V. (2019). Improved electrocatalytic activity of Au@ Fe3O4 magnetic nanoparticles for sensitive dopamine detection. Colloids and Surfaces B: Biointerfaces180, 1-8.
[5] Tyszczuk-Rotko, K., Jaworska, I., & Jędruchniewicz, K. (2019). Application of unmodified boron-doped diamond electrode for determination of dopamine and paracetamol. Microchemical Journal146, 664-672.
[6] Feng, X., Zhang, Y., Zhou, J., Li, Y., Chen, S., Zhang, L., ... & Yan, X. (2015). Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale7(6), 2427-2432.
[7] Hong, S., Lee, L. Y. S., So, M. H., & Wong, K. Y. (2013). A dopamine electrochemical sensor based on molecularly imprinted poly (acrylamidophenylboronic acid) film. Electroanalysis25(4), 1085-1094.
[8] Mazloum‐Ardakani, M., Sheikh‐Mohseni, M. A., & Benvidi, A. (2011). Electropolymerization of thin film conducting polymer and its application for simultaneous determination of ascorbic acid, dopamine and uric acid. Electroanalysis23(12), 2822-2831.
[9] ARDAKANI, M., SHEIKHMOHSENI, M. A., Beitollahi, H., Benvidi, A., & Naeimi, H. (2011). Simultaneous determination of dopamine, uric acid, and folic acid by a modified TiO_2 nanoparticles carbon paste electrode. Turkish Journal of Chemistry35(4), 573-585.
[10] Mazloum-Ardakani, M., Naser-Sadrabadi, A., Sheikh-Mohseni, M. A., Benvidi, A., Naeimi, H., & Karshenas, A. (2013). An electrochemical sensor based on carbon nanotubes and a new Schiff base for selective determination of dopamine in the presence of uric acid, folic acid, and acetaminophen. Ionics19, 1663-1671.
[11] Mazloum-Ardakani, M., Dehghani-Firouzabadi, A., Benvidi, A., Mirjalili, B. B. F., & Mirhoseini, M. A. (2015). Characterization of new molecular self-assembled monolayers on gold electrode by QCM, EIS, SEM and CV techniques: application for electrocatalytic determination of dopamine in the presence of acetaminophen. Journal of the Iranian Chemical Society12, 677-685.
[12] Li, X., Tian, A., Wang, Q., Huang, D., Fan, S., Wu, H., & Zhang, H. (2019). An electrochemical sensor based on platinum nanoparticles and mesoporous carbon composites for selective analysis of dopamine. International Journal of Electrochemical Science14(1), 1082-1091.
[13] Qiu, Z., Yang, T., Gao, R., Jie, G., & Hou, W. (2019). An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine. Journal of Electroanalytical Chemistry835, 123-129.
[14] Song, Y., Han, J., Xu, L., Miao, L., Peng, C., & Wang, L. (2019). A dopamine-imprinted chitosan Film/Porous ZnO NPs@ carbon Nanospheres/Macroporous carbon for electrochemical sensing dopamine. Sensors and Actuators B: Chemical298, 126949.
[15] Yang, J., Hu, Y., & Li, Y. (2019). Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosensors and Bioelectronics135, 224-230.
[16] Goyal, R. N., Gupta, V. K., Bachheti, N., & Sharma, R. A. (2008). Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene‐C60 coated gold electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis20(7), 757-764.
[17] Hassaninejad-Darzi, S. K., & Shajie, F. (2018). Simultaneous determination of acetaminophen, pramipexole and carbamazepine by ZSM-5 nanozeolite and TiO2 nanoparticles modified carbon paste electrode. Materials Science and Engineering: C91, 64-77.
[18] Daneshvar, L., Rounaghi, G., E'shaghi, Z., Chamsaz, M., & Tarahomi, S. (2016). Electrochemical determination of carbamazepin in the presence of paracetamol using a carbon ionic liquid paste electrode modified with a three-dimensional graphene/MWCNT hybrid composite film. Journal of Molecular Liquids215, 316-322.
[19] Dhanalakshmi, N., Priya, T., & Thinakaran, N. (2018). Highly electroactive Ce-ZnO/rGO nanocomposite: ultra-sensitive electrochemical sensing platform for carbamazepine determination. Journal of Electroanalytical Chemistry826, 150-156.
[20] Lavanya, N., Sekar, C., Ficarra, S., Tellone, E., Bonavita, A., Leonardi, S. G., & Neri, G. (2016). A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Materials Science and Engineering: C62, 53-60.
[21] Maashhadizadeh, M. H., Refahati, R., & Amereh, E. (2013). Ag/TiO2 nanocomposite modified carbon paste electrode used to differential pulse voltammetric determination of carbamazepine. Carbon22, 27.
[22] Kalanur, S. S., Seetharamappa, J., & Prashanth, S. N. (2010). Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode. Colloids and Surfaces B: Biointerfaces78(2), 217-221.
[23] Zhang, Y., He, P., & Hu, N. (2004). Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochimica Acta49(12), 1981-1988.
[24] Mashhadizadeh, M. H., & Afshar, E. (2013). Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochimica acta87, 816-823.
[25] Chen, C., Wang, Y., Ding, S., Hong, C., & Wang, Z. (2019). A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchemical Journal147, 191-197.
[26] Beitollahi, H., & Sheikhshoaie, I. (2012). Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen. Materials Science and Engineering: C32(2), 375-380.
[27] Saleh Ahammad, A. J., Lee, J. J., & Rahman, M. A. (2009). Electrochemical sensors based on carbon nanotubes. sensors9(4), 2289-2319.
[28] Maduraiveeran, G., Sasidharan, M., & Ganesan, V. (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics103, 113-129.
[29] Shamsipur, M., Najafi, M., & Hosseini, M. R. M. (2010). Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry77(2), 120-124.
[30] Zhang, W., Zhang, X., Zhang, L., & Chen, G. (2014). Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sensors and Actuators B: Chemical192, 459-466.
[31] Laviron, E. (1974). Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry52(3), 355-393.
[32] Ezoji, H., Rahimnejad, M., & Najafpour-Darzi, G. (2020). Advanced sensing platform for electrochemical monitoring of the environmental toxin; bisphenol A. Ecotoxicology and Environmental Safety190, 110088.
[33] Setoudeh, N., Jahani, S., Kazemipour, M., Foroughi, M. M., & Nadiki, H. H. (2020). Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance. Journal of Electroanalytical Chemistry863, 114045.
[34] Tajik, S., Beitollahi, H., & Aflatoonian, M. R. (2019). A novel dopamine electrochemical sensor based on La3+/ZnO nanoflower modified graphite screen printed electrode. Journal of Electrochemical Science and Engineering9(3), 187-195.
[35] Mohammadi, S., Taher, M. A., & Beitollahi, H. (2020). Treated screen printed electrodes based on electrochemically reduced graphene nanoribbons for the sensitive voltammetric determination of dopamine in the presence of uric acid. Electroanalysis32(9), 2036-2044.
[36] Iranmanesh, T., Foroughi, M. M., Jahani, S., Zandi, M. S., & Nadiki, H. H. (2020). Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta207, 120318.
[37] Haghnegahdar, N., Abbasi Tarighat, M., & Dastan, D. (2021). Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. Journal of Materials Science: Materials in Electronics32(5), 5602-5613.