[1] Ma, Y., Dai, X., Liu, M., Yong, J., Qiao, H., Jin, A., Li, Z., Huang, X., Wang, H., & Zhang, X. (2016). Strongly Coupled FeNi Alloys/NiFe2O4@Carbonitride Layers-Assembled Microboxes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials and Interfaces, 8 (50), 34396–34404.
[2] Bruce, P.G., Freunberger, S.A., Hardwick, L.J., & Tarascon, J.M. (2012). Erratum: Li-O2 and Li-S batteries with high energy storage. Nature Materials, 11 (172), 19-29.
[3] Lewis, N.S., & Nocera, D.G. (2006). Powering the planet: Chemical challenges in solar energy utilization. The Proceedings of the National Academy of Sciences, 103 (43), 15729–15735.
[4] Yan, J., Savenije, T.J., Mazzarella, L., & Isabella, O. (2022). Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy Fuels, 6 (2), 243–266.
[5] Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., & van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4 (5), 366–377.
[6] Jafari Foruzin, L., Rezvani, Z., & Nejati, K. (2021). Preparation of Ni-Fe-layered double hydroxide with high surface area as electrocatalyst for water oxidation in neutral media. Applied Chemistry, 17(64), 45-54. (in persion)
[7] Guo, W., Sun, W., Lv, L.-P., Kong, S,. & Wang, Y. (2017). Microwave-Assisted Morphology Evolution of Fe-Based Metal–Organic Frameworks and Their Derived Fe2O3 Nanostructures for Li-Ion Storage. ACS Nano, 11 (4), 4198–4205.
[8] Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K., & Jaramillo, T.F. (2017). Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355 (6321), 4998.
[9] Zhang, F.S., Wang, J.W., Luo, J. Liu, R.R., Zhang, Z.M., He, C.T., & Lu, T.B. (2018). Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 9 (5), 1375–1384.
[10] Amirhosseiny, A., & Zarei, K. (2019). Electrochemical preparation of an electrocatalytical layer containing hollow platinum nanoparticles and reduced graphene oxide on the pencil graphite electrode for hydrogen evolving reaction. Applied Chemistry, 14(51), 135-146. (in persion)
[11] Nozari-asbmarz, M., Amiri, M., Bezaatpour, A., & Arshi, S. (2020). The effect of nickel salt source and anion of electrolyte on electro-driven water oxidation activity using nickel hydroxide thin film. Applied Chemistry, 16(58), 137-148. (in persion)
[12] Ghaffarinead, A., Tabatabaei, A., Sohrabi, B., & Salahandish, R. (2019). The effect of surfactants on electrochemical hydrogen production. Applied Chemistry, 14(50), 25-40. (in persion)
[13] Mozafari, S. A., Bahmai, M., Mahdian, M., & Rahmanian, R. (2017). Electrochemical preparation of electrocatalytic layer of platinum nanoparticles of polymer fuel cell electrode and evaluation of its electrocatalytic activity in oxygen reduction reaction. Applied Chemistry, 10(34), 91-108. (in persion)
[14] Halder, A., Zhang, M., & Chi, Q. (2016). Advanced Catalytic Materials - Photocatalysis and Other Current Trends (Chapter 14). IntechOpen.
[15] Bhowmick, S., Alam, S., Shah, A.K., & Qureshi, M. (2021). Bimetallic cyclic redox couple in dimanganese copper oxide supported by nickel borate for boosted alkaline electrocatalytic oxygen evolution reaction. Sustain. Energy & Fuels, 5 (9), 2517–2527.
[16] Roy, A., Jadhav, H.S., Cho, M., & Seo, J.G. (2019). Electrochemical deposition of self-supported bifunctional copper oxide electrocatalyst for methanol oxidation and oxygen evolution reaction. Journal of Industrial and Engineering Chemistry, 76, 515–523.
[17] Feng, Y. Y., Si, S., Deng, G., Xu, Z. X., Pu, Z., Hu, H. S., & Wang, C. B. (2022). Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media. Journal of Alloys and Compounds, 892, 162113.
[18] Inamuddin, Boddula, R. & Asiri, A.M. (2020). Methods for Electrocatalysis: Advanced Materials and Allied Applications (Vol. 6). Springer Cham.
[19] Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., & Mishra, M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 8(2), 123–137.
[20] Mousavi, S.M., Hashemi, S.A., Ghasemi, Y., Amani, A.M., Babapoor, A., & Arjmand, O. (2019). Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metabolism Reviews, 51(1), 12–41.
[21] Rathinam, N.K., Salem, D.R., & Sani, R.K. (2018). Microbial Electrochemical Technology: Biofilm Engineering for Improving the Performance of Microbial Electrochemical Technologies (Chapter 2.4). Elsevier.
[22] Tiwari, S.K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10–29.
[23] Madhariya, G., Diwan, S., Chauhan, R., Chandrawanshi, N. K., & Mahish, P. K. (2023). Handbook of Biomolecules: Current applications of biomolecules in biotechnology (Chapter 20). Elsevier.
[24] Datta, L.P., Manchineella, S., & Govindaraju, T. (2020). Biomolecules-derived biomaterials. Biomaterials, 230, 119633.
[25] Sapner, V.S., Chavan, P.P., & Sathe, B.R. (2020). L -Lysine-Functionalized Reduced Graphene Oxide as a Highly Efficient Electrocatalyst for Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering, 8(14), 5524–5533.
[26] Sapner, V.S., Chavan, P.P., Munde, A. V., Sayyad, U.S., & Sathe, B.R. (2021). Heteroatom (N, O, and S)-Based Biomolecule-Functionalized Graphene Oxide: A Bifunctional Electrocatalyst for Enhancing Hydrazine Oxidation and Oxygen Reduction Reactions. Energy and Fuels, 35(8), 6823–6834.
[27] Hummers, W.S., & Offeman, R.E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
[28] Abdelhalim, A.O.E., Sharoyko, V. V., Meshcheriakov, A.A., Martynova, S.D., Ageev, S. V. Iurev, G.O., Al Mulla, H., Petrov, A. V., Solovtsova, I.L., Vasina, L. V., Murin, I. V., & Semenov, K.N. (2020). Reduction and functionalization of graphene oxide with L-cysteine: Synthesis, characterization and biocompatibility. Nanomedicine: Nanotechnology, Biology and Medicine, 29,102284.
[29] Mo, Z., Gou, H., He, J., Yang, P., Feng, C., & Guo, R. (2012). Controllable synthesis of functional nanocomposites: Covalently functionalize graphene sheets with biocompatible L-lysine. Applied Surface Science, 258(22), 8623–8628.
[30] Guo, Z., Huang, G.Q., Li, J., Wang, Z.Y., & Xu, X.F. (2015) Graphene oxide-Ag/poly-l-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 759(2), 113–121.
[31] Guo, W., Zhao, B., Zhou, Q., He, Y., Wang, Z., & Radacsi, N. (2019). Fe-Doped ZnO/Reduced Graphene Oxide Nanocomposite with Synergic Enhanced Gas Sensing Performance for the Effective Detection of Formaldehyde. ACS Omega, 4(6), 10252-10262.
[32] Mahmoud, N.E., & Abdelhameed, R.M. (2021). Plant Stress Superiority of modified graphene oxide for enhancing the growth , yield , and antioxidant potential of pearl millet ( Pennisetum glaucum L.) under salt stress. Plant Stress, 2, 100025.
[33] Soomro, S.A., Gul, I.H., Naseer, H., Marwat, S., & Mujahid, M. (2018). Improved Performance of CuFe2O4/rGO Nanohybrid as an Anode Material for Lithium-ion Batteries Prepared Via Facile One-step Method. Current Nanoscience, 15(4), 420-429.
[34] Wu, Z., Fu, Z., Tian, Y., Hasan, M., Huang, L., Yang, Y., Li, C., Zafar, A., & Shu, X. (2022). Fabrication and characterization of lysine hydrochloride Cu (II) complexes and their potential for bombing bacterial resistance. Green Processing and Synthesis, 11 (1), 445–457.
[35] Zhou, X., Huang, H., Zhu, R., Sheng, X., Xie, D., & Mei, Y. (2019). Progress in Organic Coatings Facile modi fi cation of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings. Progress in Organic Coatings, 136, 105200.
[36] Prakash, V., Sharma, S., Kaur, J., & Mehta, S.K. (2018). Graphene oxide/lysine composite-a potent electron mediator for detection of diazepam. Analytical Methods, 10(41), 5038–5046.
[37] Homayoun, A., Hamed, K., & Hojat, V. (2016). Green synthesis and characterization of spherical copper nanoparticles as organometallic antibacterial agent. Applied Organometallic Chemistry, 31(7), e3642.
[38] Phul, R., Kaur, C., Farooq, U., & Ahmad, T. (2018). Ascorbic acid assisted synthesis , characterization and catalytic application of copper nanoparticles. Material Science & Engineering International Journal, 2(4), 90-94.
[39] Hossain, O., Ahmed, S., Rahman, E., Roy, H., & Azam, S. (2021). Synthesis, characterization, and comparative assessment of antimicrobial properties and cytotoxicity of graphene-, silver-, and zinc-based nanomaterials. Analytical Science Advances, 3(1-2), 54–63.
[40] Chireh, M., Naseri, M., & Ghiasvand, S. (2019). Enhanced photocatalytic and antibacterial activities of RGO/LiFe5O8 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 385, 112063.
[41] Gupta, A., Jamatia, R., Patil, R.A., Ma, Y., & Pal, A.K. (2018). Copper Oxide / Reduced Graphene Oxide Nanocomposite-Catalyzed Synthesis of Flavanones and Flavanones with Triazole Hybrid Molecules in One Pot : A Green and Sustainable Approach, ACS Omega, 3(7), 7288–7299.
[42] Yan, Y., Li, C., Wu, H., Du, J., Feng, J., Zhang, J., Huang, L., Tan, S., & Shi, Q. (2019). Montmorillonite-modified reduced graphene oxide stabilizes copper nanoparticles and enhances bacterial adsorption and antibacterial activity. ACS Applied Bio Materials, 2(5), 1842-1849.
[43] Ye, X., Feng, J., Zhang, J., Yang, X., Liao, X., Shi, Q., & Tan, S. (2016). Controlled Release and Long-Term Antibacterial Activity of Reduced Graphene Oxide/Quaternary Ammonium Salt Nanocomposites Prepared by Non-covalent Modification, Colloids and Surfaces B: Biointerface, 149, 322-329.
[44] Ngouoko, J.J.K., Tajeu, K.Y., Temgoua, R.C.T., Doungmo, G., Doench, I., Tamo, A.K., Kamgaing, T., Osorio-Madrazo, A., & Tonle, I.K. (2022). Hydroxyapatite/L-Lysine Composite Coating as Glassy Carbon Electrode Modifier for the Analysis and Detection of Nile Blue A. Materials, 15(12), 4262.
[45] Mali, K. S., Greenwood, J., Adisoejoso, J., Phillipson, R., & De Feyter, S. (2015). Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale, 7(5), 1566-1585.
[46] Xu,Y., Shi, Y., Lei, F., & Dai, L. (2019). A novel and green cellulose-based Schiff base-Cu (II) complex and its excellent antibacterial activity. Carbohydrate Polymers, 230, 115671.
[47] Dar, M.A., Nam, S.H., Kim, Y., & Kim, W. (2010). Synthesis, characterization, and electrochemical properties of self-assembled leaf-like CuO nanostructures. Journal of Solid State Electrochemistry, 14(9), 1719-1726.
[48] Singh, P., Nath, P., Arun, R. K., Mandal, S., & Chanda, N. (2016). Novel synthesis of a mixed Cu/CuO–reduced graphene oxide nanocomposite with enhanced peroxidase-like catalytic activity for easy detection of glutathione in solution and using a paper strip. The Royal Society of Chemistry, 6(95), 92729-92738.
[49] Xiao, Y., Li, X., Zai, J., Wang, K., Gong, Y. Li, B., Han, Q., & Qian, X. (2014). CoFe2O4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries. Nano-Micro Letters, 6(4), 307–315.
[50] Wu, F., Liang, J., & Li, W. (2015). Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys. Journal of Magnesium and Alloys, 3(3), 231–236.
[51] Akbari, E., Akbari, I., & Ebrahimi, M.R. (2019). sp2/sp3 bonding ratio dependence of the band-gap in graphene oxide. The European Physical Journal B, 92(4), 71.
[52] Hidayah, N. M. S., Liu, W.-W., Lai, C.-W., Noriman, N. Z., and Khe, C.-S., Hashim, U., & Lee, H. (2017).
Comparison on Graphite , Graphene Oxide and Reduced Graphene Oxide : Synthesis and Characterization. AIP Conference Proceedings, 1892(1), 150002.
[53] Wang, S., Lu, A., & Zhong, C. J. (2021). Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 8(1), 4.
[54] Paul, A. M., Sajeev, A., Nivetha, R., Gothandapani, K., Bhardwaj, P., Govardhan, K., Raghavan, V., Jacob, G., Sellapan, R., Jeong, S. K., & Grace, A. N. (2020). Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diamond and Related Materials, 107(1), 107899.
[55] Ahmad, A., Davarpanah, A., Thangavelu, L., Bokov, D. O., Alshgari, R. A., & Karami, A. M. (2022). Self-assembled pine-like CuCo/CP configuration as efficient electrocatalysts toward electrochemical water splitting. Journal of Molecular Liquids, 351(1), 118635.
[56] Wu, H., Zhai, Q., Ding, F., Sun, D., Ma, Y., Ren, Y., Wang, B., Li, F., Bian, H., Yang, Y., Chen, L., Tang, S., & Meng, X. (2022). Amorphous FeNiCu-MOF as highly efficient electrocatalysts for oxygen evolution reaction in alkaline medium. Dalton Transactions, 51(37), 14306.
[57] Ren, X., Ji, X., Wei, Y., Wu, D., Zhang, Y., Ma, M., Liu, Z., Asiri, A. M., Wei, Q., & Sun, X. (2018). In situ electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: A highly conductive electrocatalyst for the oxygen evolution reaction. Chemical Communications, 54(12), 1425.