Design of termo-sensitive molecularly imprinted polymers(MIP) and in vitro evaluation of controlled release of Eptifibatide drug

Document Type : Original Article

Authors

1 Assistant Professor

2 professor

Abstract

In this research, a nano polymer was fabricated via the molecular imprinted polymer (MINP) method to transport and control the release of the drug eptifibatide. N-isopropyl acrylamide (NIPAAM), N-vinylidene (NVP), and EGDMA have been used as a temperature-sensitive monomers and cross-linker, respectively. Moreover, by changing the percentage composition of monomers, the drug’s potential adsorption, and temperature sensitivity were evaluated and optimized. The sample was examined and confirmed using nuclear magnetic resonance (1HNMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and Dynamic light scattering (DLS).
The results related to the in vitro drug eptifibatide demonstrated that the optimization of the nanopolymer composition percentage (MINP4) with has a direct impact on some characteristics such as proper response to ambient temperature, the ability to control response time, adequate size, critical dissolution temperature (LCST), and hydrophilicity of the polymer network. Therefore, due to increasing the half-life of eptifibatide, it could be a suitable carrier to deliver the drug molecules to the desired tissue. also, target selection, mastery of drug distribution control, and sensitivity to temperature are the main factors to enhance the efficiency of nano polymer for drug delivery.

Keywords

Main Subjects