[1] Rosen, B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R., Percec, V. (2009). Dendron-mediated self assembly, disassembly, and self-organization of complex systems. Chem Rev, 109, 6275–540.
[2] Kaamyabi, Sh. (2021). Synthesis and characterization of gold coated iron oxide nanoparticles for use in hyperthermia. Applied Chemistry, 16(61), 71-84. (in persion)
[3] Rezanejade Bardajee, Gh., Monfared, A., & Rezaei, M. R. (2021). Synthesis and Characterization of a magnetic multi walled carbon nanotubes nanocomposite hydrogel based on poly ((2-dimethylamino) ethyl methacrylate) grafted onto sodium alginate. Applied Chemistry, 16(61), 9-24. (in persion)
[4] Sun, Z., Worden, M., Thliveris, J. A., et al. (2016). Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Nanomedicine, 12(7), 1775–1784.
[5] Wulff, G., Gross, T., Schonfeld, R. (1997). Enzyme Models Based on Molecularly Imprinted Polymers with Strong Esterase Activity. Angew Chem Int Ed, 36, 1962.
[6] Chen, L. X., Wang, X. Y., Lu, W. H., Wu, X. Q., Li, J. H. (2016). Molecular imprinting: perspectives and applications. Chem Soc Rev, 45, 2137.
[7] Li, Q. J., Ling, B. P., Jiang, L. D., Ye, L. (2018). A paradigm shift design of functional monomers for developing molecularly imprinted polymers. Chem Eng J, 350, 217.
[8] Jalili, R., Khataee, A., Rashidi, M. R., Razmjou, A. (2020). Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers. Food Chem, 314, 126172.
[9]Esmaeilpour, M., Larimi, A., Ghahramanafshar, M., & Faghihi, M. (2022). Ethylenediaminetetraacetic acid coated Fe₃O₄@SiO₂ nanocomposite: An effective adsorbent for the removal of copper ions from aqueous system. Applied Chemistry, 17(65), 45-54.
[10] Seo, S. D., Kang, K. C., Jeong, J. W., Lee, S. M., Lee, J. D., Kim, D. H. (2020). Preparation and Characterization of Poly Methyl Methacrylate/Clay Nanocomposite Powders by Microwave-Assisted In-Situ Suspension Polymerization. J Nanosci Nanotechnol, 20, 4193.
[11] Luo, J., Huang, J., Cong, J. J., Wei, W., Liu, X. Y. (2017). Double Recognition and Selective Extraction of Glycoprotein Based on the Molecular Imprinted Graphene Oxide and Boronate Affinit. ACS Appl Mater Interfaces, 9, 7735.
[12] Zeng, Z., Hoshino, Y., Rodriguez, A., Yoo, H., Shea, K. J. (2010). Synthetic Polymer Nanoparticles with Antibody-like Affinity for a Hydrophilic Peptide. ACS Nano, 4, 199–204.
[13] Zhang, Y., Li, S., Ma, X. T., He, X. W., Li, W. Y., Zhang, Y. K. (2020). Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Microchim Acta, 187, 228.
[14] Han, S., Su, L., Zhai, M., Ma, L., Liu, S., Teng, Y. (2019). A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J Mater Sci, 54, 3331–3341.
[15] Xu, Y., Hu, X., Guan, P., Du, C., Tian, Y. Ding, S., Li, Z., Yan, C. (2019). A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. J Mater Sci, 54, 9124–9139.
[16] Ferdose, R., Zirak, M., & Saraei, M. (2022). Cellulose Nanofibers/SiO2 Nanocomposite: Preparation, Characterization and pH-Controlled Doxorubicin Delivery Properties. Applied Chemistry, 17(65), 91-100.
[17] Li, C., Ma, Y., Niu, H.and Zhang, H. (2015). Hydrophilic Hollow Molecularly Imprinted Polymer Microparticles with Photo- and Thermoresponsive Template Binding and Release Properties in Aqueous Media. ACS Appl. Mater.Interfaces, 7, 27340–27350.
[18] Ebrahimi,E., Khandaghi, A. A., Valipour, F., Babaie, S., Asghari, F., Motaali, S., Abbasi, E., Akbarzadeh, A., Davaran, S. (2016). In vitro study and characterization of doxorubicin-loaded magnetic nanoparticles modified with biodegradable copolymers. Artificial cells nanomedicine and biotechnology, 44 , 550-558
[19] Badiger, M. V., Rajamohanan, P. R., Kulkarni, M. G., Ganapathy, S., Mashelkar, R. A. (1991). Proton MASS-NMR: a new tool to study thermoreversible transition in hydrogel. Macromolecules, 24(1), 106–11.
[20] Erdemi, H., Bozkurt, A. (2004). Synthesis and characterization of poly (vinylpyrrolidone-co vinylphosphonic acid) copolymers. Eur Polym J, 40(8), 1925–9.
[21] Li, G., Guo, L., Chang, X., Yang, M. (2012). Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol, 50(4), 899–904.