[1] Song, T.-B., Chen, Q., Zhou, H., Jiang, C., Wang, H.-H., Yang, Y.M., . . . Yang, Y. (2015). Perovskite solar cells: film formation and properties. J Journal of Materials Chemistry A, 3(17), 9032-9050.
[2] Sheibani, E., Heydari, M., Ahangar, H., Mohammadi, H., Fard, H.T., Taghavinia, N., . . . Tajabadi, F. (2019). 3D asymmetric carbozole hole transporting materials for perovskite solar cells. Solar Energy, 189, 404-411.
[3] Park, J., Kim, J., Yun, H.-S., Paik, M.J., Noh, E., Mun, H.J., . . . Seok, S.I.(2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. J Nature, 616(7958), 724-730.
[4] Al-Ashouri, A., Köhnen, E., Li, B., Magomedov, A., Hempel, H., Caprioglio, P., . . . Smith, J.A. (2020). Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction. J Science, 370(6522), 1300-1309.
[5] Tang, C.W. (1986). Two‐layer organic photovoltaic cell. J Applied physics letters, 48(2), 183-185.
[6] Shahinuzzaman, M., Afroz, S., Mohafez, H., Jamal, M., Khandaker, M.U., Sulieman, A., . . . Islam, M.A. (2022). Roles of Inorganic Oxide Based HTMs towards Highly Efficient and Long-Term Stable PSC—A Review. J Nanomaterials, 12(17), 3003.
[7] Sajid, S., Alzahmi, S., Salem, I.B., Park, J., & Obaidat, I.M. (2023). Lead-Free Perovskite Homojunction-Based HTM-Free Perovskite Solar Cells: Theoretical and Experimental Viewpoints. J Nanomaterials, 13(6), 983.
[8] Wu, J., Ma, Z., Huang, S., Lei, Y., Guo, H., Fang, Y., . . . Lin, Y. (2022). Directly purifiable Pre-oxidation of Spiro-OMeTAD for stability enhanced perovskite solar cells with efficiency over 23%. Chemical Engineering Journal, 437, 135457.
[9] Sheibani, E., Yang, L., & Zhang, J. (2020). Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells. Solar RRL, 4(12).
[10] Yao, Y., Cheng, C., Zhang, C., Hu, H., Wang, K., & De Wolf, S. (2022). Organic Hole‐Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. J Advanced Materials, 34(44), 2203794.
[11] Sheibani, E., Moslempoor, M., & Arami Ghahfarokhi, F. (2023). Investigation of Hole Transporting Materials Based on p-type Polymers in Invert Perovskite Solar Cells (In press). Science and Technology, 1.
[12] Park, H.H. (2022). Efficient and stable perovskite solar cells based on inorganic hole transport materials. J Nanomaterials, 12(1), 112.
[13] Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., & Park, N.-G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699.
[14] Jeon, N.J., Lee, H.G., Kim, Y.C., Seo, J., Noh, J.H., Lee, J., & Seok, S.I. (2014). o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J Journal of the American Chemical Society, 136(22), 7837-7840.
[15] Wu, J., Ma, Z., Huang, S., Lei, Y., Guo, H., Fang, Y., . . . Lin, Y. (2022). Directly purifiable Pre-oxidation of Spiro-OMeTAD for stability enhanced perovskite solar cells with efficiency over 23%. J Chemical Engineering Journal, 437, 135457.
[16] Franckevičius, M., Mishra, A., Kreuzer, F., Luo, J., Zakeeruddin, S.M., & Grätzel, M. (2015). A dopant-free spirobi [cyclopenta [2, 1-b: 3, 4-b′] dithiophene] based hole-transport material for efficient perovskite solar cells. J Materials Horizons, 2(6), 613-618.
[17] Chen, Y., Yang, X., Wang, W., Ran, R., Zhou, W., Shao, Z., & Fuels. (2020). Tuning the A-site cation deficiency of La0. 8Sr0. 2FeO3− δ perovskite oxides for high-efficiency triiodide reduction reaction in dye-sensitized solar cells. J Energy, 34(9), 11322-11329.
[18] Konstantakou, M., Perganti, D., Falaras, P., & Stergiopoulos, T. (2017). Anti-solvent crystallization strategies for highly efficient perovskite solar cells. J Crystals, 7(10), 291.
[19] Laskin, A., Laskin, J., & Nizkorodov, S.A. (2015). Chemistry of atmospheric brown carbon. J Chemical reviews, 115(10), 4335-4382.
[20] Pu, X., Zhao, D., Fu, C., Chen, Z., Cao, S., Wang, C., & Cao, Y. (2021). Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. J Angewandte Chemie International Edition, 60(39), 21310-21318.