[1] Wan, Z., Tao, Y., Shao, J., Zhang, Y., You, H. (2021). Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells. Energy Convers. Manag., 228(113729), 1-18.
[2] Wang, K., Men, Y., Liu, W., Zhang, J. (2022). Recent progress in catalytical CO purification of H2-rich reformate for proton exchange membrane fuel cells. Int. J. Hydrogen Energy, 48(64), 25100-25118.
[3] Seyedzadeh, Z. Atabaki, F. Ghaemi, N. Nasiri M. (2019). Composite membranes for proton exchange membrane fuel cells based on methyl methacrylate-co - maleimide / phosphotungstic acid. Applied Chemistry, 13(49), 65–78. (in persion)
[4] Rahil, A., Gammon, R., Brown, N. (2018). Flexible operation of electrolyser at the garage forecourt to support grid balancing and exploitation of hydrogen as a clean fuel. Res. Transp. Econ., 70,125–138.
[5] Sahebdelfar, S., Ravanchi, M. T. (2022). Carbon monoxide clean-up of the reformate gas for PEM fuel cell applications: A conceptual review. Int. J. Hydrogen Energy, 48(64), 24709-24729.
[6] Ruocco, C., Palma, V., Ricca, A. (2019). Hydrogen production by oxidative reforming of ethanol in a fluidized bed reactor using a Pt Ni/CeO2SiO2 catalyst. Int. J. Hydrogen Energy, 44(25),12661–70.
[7] Shiva Kumar, S., Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Mater. Sci. Energy Technol., 2(3), 442–54.
[8] Ghaffarinead, A., Tabatabaei, A., Sohrabi, B., Salahandish, R. (2019). The effect of surfactants on electrochemical hydrogen production. Applied Chemistry, 14(50), 25–40. (in persion)
[9] Luo, M., Yi, Y., Wang, S., Wang, Z., Du, M., Pan, J., et al. (2018). Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energy Rev., 81, 3186–214.
[10] Voitic, G., Nestl, S., Malli, K., Wagner, J., Bitschnau, B., Mautner, F-A., et al. (2016). High purity pressurised hydrogen production from syngas by the steam-iron process. RSC Advances, 6(58), 53533–41.
[11] Hormilleja, E., Durán, P., Plou, J., Herguido, J., Peña, J. A. (2014). Hydrogen from ethanol by steam iron process in fixed bed reactor. Int. J. Hydrogen Energy, 39(10), 5267–73.
[12] Yang, J., Cai, N., Li, Z. (2008). Hydrogen Production from the Steam−Iron Process with Direct Reduction of Iron Oxide by Chemical Looping Combustion of Coal Char. Energy & Fuels, 22(4), 2570–9.
[13] Gupta, P., Velazquez-Vargas, L. G., Fan, L-S. (2007). Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas. Energy & Fuels, 21(5), 2900–8.
[14] Li, F., Kim, H. R., Sridhar, D., Wang, F., Zeng, L., Chen, J., et al. (2009). Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance. Energy & Fuels, 23(8), 4182–9.
[15] Urasaki, K., Tanimoto, N., Hayashi, T., Sekine, Y., Kikuchi, E., Matsukata, M. (2005). Hydrogen production via steam–iron reaction using iron oxide modified with very small amounts of palladium and zirconia. Appl. Catal. A Gen., 288(1-2), 143–8.
[16] Galvita, V., Sundmacher, K. (2005). Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor. Appl. Catal. A Gen., 289(2), 121–7.
[17] Dharanipragada, N. V. R. A., Galvita, V. V., Poelman, H., Buelens, L. C., Detavernier, C., Marin, G. B. (2018). Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols. Appl. Catal. B Environ., 222, 59–72.
[18] Cocchi, S., Mari, M., Cavani, F., Millet, J-M. M. (2014). Chemical and physical behavior of CoFe2O4 in steam–iron process with methanol. Appl. Catal. B Environ., 152–153, 250–61.
[19] Crocellà, V., Cavani, F., Cerrato, G., Cocchi, S., Comito, M., Magnacca, G., et al. (2012). On the Role of Morphology of CoFeO 4 Spinel in Methanol Anaerobic Oxidation. J. Phys. Chem. C, 116(28), 14998–5009.
[20] Góral, A., Czeppe, T., Berent, K. (2019). Oxidation behaviour of thin Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrate. Surf. Coatings Technol., 369(15), 95–104.
[21] Wang, H-S., Huang, K-Y., Huang, Y-J., Su, Y-C., Tseng, F-G. (2015). A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield. Appl. Energy, 138, 21–30.
[22] Parsaee, A., Eliassi, A., Ranjbar, M., Kashi, E. (2018). Preparation of Cu-Zn-Ce-Al Spinel Catalyst for Hydrogen Production in Micro-Channel Reactor and Considering the Geometrical Effects of Micro-Channels on Velocity Distribution. Applied Chemistry, 12(45), 71–82. (in persion)
[23] Khoshrooyan, L., Eliassi, A., Ranjbar, M. (2016). Effects of catalyst particle size on methanol dehydration at different temperatures and weight hourly space velocities. J. Particle Science and Technology, 2(1), 41–7. (in persion)
[24] Ramasubramanian, V., Ramsurn, H., Price, G. L. (2020). Hydrogen production by catalytic decomposition of methane over Fe based bi-metallic catalysts supported on CeO2–ZrO2. Int. J. Hydrogen Energy, 45(21), 12026–36.
[25] Li, Z., Wachemo, A. C., Yuan, H., Korai, R. M., Li, X. (2020). Improving methane content and yield from rice straw by adding extra hydrogen into a two-stage anaerobic digestion system. Int. J. Hydrogen Energy, 45(6), 3739–49.
[26] Khani, H., Khandan, N., Eikani, M. H., Eliassi, A. (2022). Production of clean hydrogen fuel on a bifunctional iron catalyst via chemical loop reforming of methanol. Fuel, 334, 126607.
[27] Khani, H., Khandan, N., Eikani, M. H., Eliassi, A. (2023). Investigation of synthesized Fe2O3 and CuO–Fe2O3 for pure hydrogen production by chemical-loop reforming of methanol in a micro-channel reactor. Int. J. Hydrogen Energy, 48(16), 6436–50.
[28] Sun, Z., Zhang, X., Li, H., Liu, T., Sang, S., Chen, S., et al. (2020). Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion. Appl. Catal. B Environ., 269, 118758.
[29] Zeng, L., Wei, D., Toan, S., Sun, Z., Sun, Z. (2022). Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply. Green Energy Environ., 7(1):145–55.