Fabrication of highly permselective mixed matrix graphene oxide/ sodium tripolyphosphate-based cation exchange membranes for monovalent and divalent ion desalination

Document Type : Original Article

Authors

Analytical Chemistry Group, Chemistry Department, AmirKabir University of Technology (Polytechnic), Tehran, Iran

Abstract

In this study, graphene oxide (GO) was functionalized by sodium triphosphate (NaTPP) through a physical grafting method and used as a nanofiller to fabricate cation exchange membranes based on polyvinylidene fluoride (PVDF). The influences of the loading percentage of NaTPP in functionalized GO (GON) samples on the hydrophilicity, surface and cross-sectional morphology, permselectivity, and ion transport number of the sodium ion on the fabricated CEMs were explored using different techniques. Adding NaTPP to GO resulted in a more even surface structure, enhanced surface wettability, and decrement of membrane area resistance for the GON-based CEMs compared to GO-containing membranes. The MGON (0.5) membrane showed a high water uptake of 46.2 ± 2.3% and an ion exchange capacity of 3.8 ± 0.1 meq g-1, which facilitated the easier transport of monovalent and divalent ions within the membrane. The results showed that the MGON (0.5) membranes possessed higher permselectivity for monovalent and divalent ions including Na+ (98.3%), K+ (96.4%), Ca2+ (80.2%), and Mg2+(76.3%). Additionally, the membrane area resistance of this optimized membrane was 1.3 ± 0.2 Ω cm2, which was about 87.48% lower than the membrane containing unmodified GO.

Keywords

Main Subjects


[1] Ravichandran, S. R., Venkatachalam, C. D., Sengottian, M., Ramachandran, D., Saminathan, A., Raja, A., ... & Kandasamy, S. (2024). Modification of cellulose acetate membrane by integrating magnetite@ xanthan gum nanocomposite to enhance performance characteristics. Journal of Environmental Chemical Engineering, 12(3), 112435.
[2] Nabavi, S. R. (2019). Preparation and Characterization of Polyaniline/Graphene Oxide Nanocomposite and its Assessment for Removal of Chromium (VI) from Aqueous Media (in persion).
[3] Khazaei, H., & Amirinejad, M. (2019). Removal of Lead Ion by Sulfonated Polyethersulfone Membrane Using Diffusion Dialysis. Applied Chemistry Today, 14(52), 87-102 (in persion).
[4] Khodabakhshi, A., Asgari, S., & Hosseini, S. M. (2019). Preparation and characterization of heterogeneous anion exchange membranes based on poly (methyl methacrylate), poly (vinyl chloride) and functionalized carbon nanotubes. Applied Chemistry Today, 14(52), 243-258 (in persion).
[5] Alabi, A., AlHajaj, A., Cseri, L., Szekely, G., Budd, P., & Zou, L. (2018). Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water, 1(1), 10.
[6] Teymouri, Z., Naji, L., & Kazemifard, S. (2017). Synthesis and Characterization of Silver Nanowires as a transparent and flexible electrode for Application in Polymer Solar Cells. Applied Chemistry Today, 12(42), 223-242 (in persion).
[7] Lee, J., Chae, H. R., Won, Y. J., Lee, K., Lee, C. H., Lee, H. H., ... & Lee, J. M. (2013). Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. Journal of membrane science, 448, 223-230.
[8] Tang, Y. P., Paul, D. R., & Chung, T. S. (2014). Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol. Journal of Membrane Science, 458, 199-208.
[9] Gholami, N., & Mahdavi, H. (2023). Synthesis and application of graphene oxide and sulfonated graphene oxide nanoparticles for using in nanofiltration membranes polyether sulfone. Applied Chemistry Today, 18(66), 241-260 (in persion).
[10] Jashni, E., Hosseini, S. M., Shabanian, M., & Sadrzadeh, M. (2021). Silane functionalized graphene oxide-bound polyelectrolyte layers for producing monovalent cation permselective membranes. Separation and Purification Technology, 278, 119583.
[11] Diagboya, P. N., Olu-Owolabi, B. I., Zhou, D., & Han, B. H. (2014). Graphene oxide–tripolyphosphate hybrid used as a potent sorbent for cationic dyes. Carbon, 79, 174-182.
[12] Mansourpanah, Y., & Amiri, Z. (2014). Preparation of modified polyethersulfone nanoporous membranes in the presence of sodium tripolyphosphate for color separation; characterization and antifouling properties. Desalination, 335(1), 33-40.
[13] Wang, N., Yin, X., Zhang, J., Gao, H., Diao, X., & Yao, H. (2020). Preparation and anti-corrosive properties of waterborne epoxy composite coating containing graphene oxide grafted with sodium tripolyphosphate. Coatings, 10(4), 307.
[14] Jafari, Z., Rad, A. S., Baharfar, R., Asghari, S., & Esfahani, M. R. (2020). Synthesis and application of chitosan/tripolyphosphate/graphene oxide hydrogel as a new drug delivery system for Sumatriptan Succinate. Journal of molecular liquids, 315, 113835.
[15] Afsarian, Z., & Mansourpanah, Y. (2018). Surface and pore modification of tripolyphosphate-crosslinked chitosan/polyethersulfone composite nanofiltration membrane; characterization and performance evaluation. Korean Journal of Chemical Engineering, 35, 1867-1877.
[16] Babakhani, A., & Sartaj, M. (2022). Competitive adsorption of nickel (II) and cadmium (II) ions by chitosan cross-linked with sodium tripolyphosphate. Chemical Engineering Communications, 209(10), 1348-1366.
[17] Kowalski, Z., Makara, A., Henclik, A., Kulczycka, J., & Cholewa, M. (2020). Comparative evaluation of sodium tripolyphosphate production technologies with the use of a complex quality method. Polish Journal of Chemical Technology, 22(4), 48-54.
[18] Lyn, F. H., Tan, C. P., Zawawi, R. M., & Hanani, Z. N. (2021). Physicochemical properties of chitosan/graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids, 117, 106707.
[19] Bozorgi, P., Naji, L., & Valizadeh, S. (2024). Effect of β-alanine modified graphene oxide on separation properties of thin film nanocomposite membrane in water desalination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 687, 133562.
[20] Firouzabadi, S. M. Z., Naji, L., & Ghadiri, L. (2024). Comparative study on graphene oxide and sulfonated graphene oxide reinforced polyethersulfone-based cation-exchange membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134392.
[21] Zehra, A., Arsalan, M., & Rafiuddin. (2023). PVC Incorporated ZATP Composite Membrane: Effect of Polymer to Filler Ratio for Confirming the Stability and Electrochemical Properties. Journal of Water Chemistry and Technology, 45(2), 109-119.
[22] Abdel-Hamed, M. O., Draz, A. A., Khalaf, M., El-Hossary, F. M., Mohamed, H. F., & Abdel-Hady, E. E. (2024). Effect of Plasma pretreatment and Graphene oxide ratios on the transport properties of PVA/PVP membranes for fuel cells. Scientific Reports, 14(1), 1092.
[23] Nazif, A., Saljoughi, E., Mousavi, S. M., & Karkhanechi, H. (2023). Improved permselectivity and mechanical properties of sulfonated poly dimethyl phenylene oxide cation exchange membrane using MXene nanosheets. Desalination, 549, 116329.
[24] Zendehnam, A., Azarnik, M., Zendehnam, A., Ghazanfarpour, S., Shen, J., Van der Bruggen, B., & Hosseini, S. M. (2019). Enhancing the electrochemical and antibacterial characteristics of cation exchange membrane by using synthesized (GO-co-Ag) nanoplates. Ionics, 25, 6123-6133.
[25] Hosseini, S. M., Alibakhshi, H., Jashni, E., Parvizian, F., Shen, J. N., Taheri, M., ... & Rafiei, N. (2020). A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. Journal of hazardous materials, 381, 120884.
[26] Mohsen Hosseini, S., Golshanikia, P., Habibi, M., Jashni, E., Shen, J., & Ebrahimi, M. (2022). Intensifying antibacterial and electrochemical behaviors of CuO induced-ion exchange membrane for water treatment. Journal of Polymer Research, 29(6), 250.
[27] Ghadiri, L., Naji, L., & Javanbakht, M. (2023). Highly permselective polyvinylidene fluoride-based cation-exchange membranes containing phosphorated graphene oxide for electrodialysis. Journal of Environmental Chemical Engineering, 11(5), 110629.
[28] Gahlot, S., Sharma, P. P., & Kulshrestha, V. (2015). Dramatic improvement in ionic conductivity and water desalination efficiency of SGO composite membranes. Separation Science and Technology, 50(3), 446-453.
[29] Du, H., Li, Z., Li, H., Zhao, Y., Li, X., Liu, J., & Ji, Z. (2022). Preparation of polymer composite selective permeable membrane with graphene oxide and application for chemical protective clothing. Processes, 10(3), 471.
[30] Ammar, A., Al-Enizi, A. M., AlMaadeed, M. A., & Karim, A. (2016). Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian journal of chemistry, 9(2), 274-286.
[31] Hosseini, S. M., Jashni, E., Habibi, M., Nemati, M., & Van der Bruggen, B. (2017). Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization. Journal of Membrane Science, 541, 641-652.
[32] Zhang, B., Gao, H., Xiao, C., Tong, X., & Chen, Y. (2020). The trade-off between membrane permselectivity and conductivity: A percolation simulation of mass transport. Journal of Membrane Science, 597, 117751.
[33] Liu, X., Gao, H., Chen, X., Hu, Y., Pei, S., Li, H., & Zhang, Y. (2016). Synthesis of perfluorinated ionomers and their anion exchange membranes. Journal of Membrane Science, 515, 268-276.
[34] Heidary, F., Kharat, A. N., & Khodabakhshi, A. R. (2016). Preparation, Characterization and Transport Properties of Novel Cation-Exchange Nanocomposite Membrane Containing BaFe 12 O 19 Nanoparticles. Journal of Cluster Science, 27, 193-211.
[35] Tedesco, M., Hamelers, H. V. M., & Biesheuvel, P. M. (2016). Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes. Journal of Membrane Science, 510, 370-381.
[36] Huang, Y., Fan, H., & Yip, N. Y. (2023). Influence of electrolyte on concentration-induced conductivity-permselectivity tradeoff of ion-exchange membranes. Journal of Membrane Science, 668, 121184.
[37] Firdaous, L., Malériat, J. P., Schlumpf, J. P., & Quéméneur, F. J. S. S. (2007). Transfer of monovalent and divalent cations in salt solutions by electrodialysis. Separation Science and Technology, 42(5), 931-948.
[38] Alabi, A., Cseri, L., Al Hajaj, A., Szekely, G., Budd, P., & Zou, L. (2020). Electrostatically-coupled graphene oxide nanocomposite cation exchange membrane. Journal of Membrane Science, 594, 117457.
[39] Zhang, X., Zhou, J., Zou, X., Wang, Z., Chu, Y., & Wang, S. (2018). Preparation of nano-SiO2/Al2O3/ZnO-blended PVDF cation-exchange membranes with improved membrane permselectivity and oxidation stability. Materials, 11(12), 2465.
[40] Nagarale, R. K., Gohil, G. S., & Shahi, V. K. (2006). Recent developments on ion-exchange membranes and electro-membrane processes. Advances in colloid and interface science, 119(2-3), 97-130.
[41] Vallois, C., Sistat, P., Roualdes, S., & Pourcelly, G. (2003). Separation of H+/Cu2+ cations by electrodialysis using modified proton conducting membranes. Journal of membrane science, 216(1-2), 13-25.
[42] Jashni, E., Hosseini, S. M., Shen, J. N., & Van der Bruggen, B. (2019). Electrochemical characterization of mixed matrix electrodialysis cation exchange membrane incorporated with carbon nanofibers for desalination. Ionics, 25, 5595-5610.
[43] Xu, T. (2005). Ion exchange membranes: State of their development and perspective. Journal of membrane science, 263(1-2), 1-29.
[44] Zheng, Y., Jin, Y., Zhang, N., Wang, D., Yang, Y., Zhang, M., ... & Wu, Y. (2022). Preparation and characterization of Ti3C2TX MXene/PVDF cation exchange membrane for electrodialysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, 129556.
[45] Lei, Y. L., Luo, Y. J., Chen, F., & Mei, L. H. (2014). Sulfonation process and desalination effect of polystyrene/PVDF semi-interpenetrating polymer network cation exchange membrane. Polymers, 6(7), 1914-1928.