[1] Kaur, S., & Gauttam, P. (2022). Water Security in India: Exploring the Challenges and Prospects. Nontraditional Security Concerns in India: Issues and Challenges, 211-232.
[2] Bielenberg, J. D. (2015). When Heavyweights Get Thirsty, Contracts Fall to the Wayside: A Case for Common Contract Principles and State Decisis [Kansas v. Nebraska, 135 S. Ct. 1042 (2015)]. Washburn LJ, 55, 759.
[3] Islam, S. M. F., & Karim, Z. (2019). World’s demand for food and water: The consequences of climate change. Desalination-challenges and opportunities, 1-27.
[4] Dorling, D. (2021). World population prospects at the UN: our numbers are not our problem?.In The struggle for social sustainability (pp. 129-154). Policy Press.
[5] Alfonso-Muniozguren, P., Serna-Galvis, E. A., Bussemaker, M., Torres-Palma, R. A., & Lee, J. (2021). A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrasonics Sonochemistry, 76.
[6] Karimi-Maleh, H., Ayati, A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S., & Sillanpää, M. (2021). Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. Journal of Cleaner Production, 125880.
[7] Nguyen, M. K., Lin, C., Bui, X. T., Rakib, M. R. J., Nguyen, H. L., Truong, Q. M., & Idris, A. M. (2024). Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state–of–the-art removal. Chemosphere, 141678.
[8] Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource technology, 224, 1-12.
[9] Silva, T. L. da, Costa, C. S. D., da Silva, M. G. C., & Vieira, M. G. A. (2022). Overview of non-steroidal anti-inflammatory drugs degradation by advanced oxidation processes. Journal of Cleaner Production, 131226.
[10] Bui, T. X., & Choi, H. (2009). Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. Journal of Hazardous Materials, 168(2-3), 602-608.
[11] Adityosulindro, S., Barthe, L., González-Labrada, K., Haza, U. J. J., Delmas, H., & Julcour, C. (2017). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrasonics sonochemistry, 39, 889-896.
[12] Kråkström, M., Saeid, S., Tolvanen, P., Kumar, N., Salmi, T., Kronberg, L., & Eklund, P. (2022). Identification and quantification of transformation products formed during the ozonation of the non-steroidal anti-inflammatory pharmaceuticals ibuprofen and diclofenac. Ozone: Science & Engineering, 44(2), 157-171.
[13] Kumar, A., Kumar, A., Sharma, G., Naushad, M., Stadler, F. J., Ghfar, A. A., ... & Saini, R. V. (2017). Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis & photo-ozonation. Journal of Cleaner Production, 165, 431-451.
[14] Aoun, N., Boucheloukh, H., Harrouche, K., Boughrara, B., & Sehili, T. (2023). SrNiO3 perovskite synthesis for enhanced photodegradation of the nonsteroidal anti-inflammatory drug naproxen: a clean and sustainable process for water treatment. Inorganic Chemistry Communications, 158, 111459.
[15] El-Shafey, E. S. I., Al-Lawati, H. A., & Al-Hussaini, A. Y. (2014). Adsorption of fexofenadine and diphenhydramine on dehydrated and activated carbons from date palm leaflets. Chemistry and Ecology, 30(8), 765-783.
[16] Bohdziewicz, J., Kudlek, E., & Dudziak, M. (2014). Removal of selected pharmaceutical compounds from the simulated municipal secondary effluent using the nanofiltration process. Membranes and Membrane Processes in Environmental Protection, red, 119, 219-228.
[17] Kuttiani Ali, J., Abi Jaoude, M., & Alhseinat, E. (2021). Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Separation and Purification Technology, 266, 118585.
[18] Abdi, S., & Nasiri, M. (2019). Enhanced hydrophilicity and water flux of poly (ether sulfone) membranes in the presence of aluminum fumarate metal–organic framework nanoparticles: preparation and characterization. ACS applied materials & interfaces, 11(16), 15060-15070.
[19] Shamsodin, M., Fazli, M., & Nasiri, M. (2019). Preparation and characterization of PES–Diatomaceous organic–inorganic composite ultrafiltration membrane. Applied Chemistry Today, 14(50), 235-248 (in Persian).
[20] Aghdami, A., & Elyasi Kojabad, M. (2024). Wastewater Treatment Hybrid Process Using Coagulation-Membrane Filtration for Industrial Purposes. Applied Chemistry Today, 19(72), 269-282 (in Persian).
[21] Lu, X., Bian, X., & Shi, L. (2002). Preparation and characterization of NF composite membrane. Journal of Membrane Science, 210(1), 3-11.
[22] Diawara, C. K. (2008). Nanofiltration process efficiency in water desalination. Separation & purification reviews, 37(3), 302-324.
[23] Basu, S., & Balakrishnan, M. (2017). Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Separation and Purification Technology, 179, 118-125.
[24] Mulyanti, R., & Susanto, H. (2018, March). Wastewater treatment by nanofiltration membranes. In IOP conference series: earth and environmental science (Vol. 142, No. 1, p. 012017). IOP Publishing.
[25] Peñate, B., & García-Rodríguez, L. (2012). Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination, 284, 1-8.
[26] Song, Y., Sun, P., Henry, L. L., & Sun, B. (2005). Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. Journal of membrane science, 251(1-2), 67-79.
[27] Seah, M. Q., Lau, W. J., Goh, P. S., Tseng, H. H., Wahab, R. A., & Ismail, A. F. (2020). Progress of interfacial polymerization techniques for polyamide thin film (nano) composite membrane fabrication: a comprehensive review. Polymers, 12(12), 2817.
[28] Masjoudi, M., Golgoli, M., Nejad, Z. G., Sadeghzadeh, S., & Borghei, S. M. (2021). Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere, 263, 128043.
[29] Raicopol, M. D., Andronescu, C., Voicu, S. I., Vasile, E., & Pandele, A. M. (2019). Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohydrate Polymers, 214, 204-212.
[30] Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P. & .lsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(suppl_1), D668-D672.
[31] Tian, L., Jiang, Y., Li, S., Han, L., & Su, B. (2020). Graphene oxide interlayered thinfilm nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance. Separation and Purification Technology, 248, 117153.
[32] Zhang, W., Ding, L., Zhang, Z., Wei, J., Jaffrin, M. Y., & Huang, G. (2016). Threshold flux and limiting flux for micellar enhanced ultrafiltration as affected by feed water: experimental and modeling studies. Journal of Cleaner Production, 112, 1241-1251.
[33] Li, C. W., Liu, C. K., & Yen, W. S. (2006). Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu (II) ions. Chemosphere, 63(2), 353-358.
[34] Sharma, N., & Purkait, M. K. (2016). Enantiomeric and racemic effect of tartaric acid on polysulfone membrane during crystal violet dye removal by MEUF process. Journal of Water Process Engineering, 10, 104-112.
[35] Samper, E., Rodríguez, M., De la Rubia, M. A., & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and purification technology, 65(3), 337-342.
[36] Khorshidi, B., Thundat, T., Fleck, B. A., & Sadrzadeh, M. (2016). A novel approach toward fabrication of high performance thin film composite polyamide membranes. Scientific reports, 6(1), 1-10.
[37] Zhu, J., Hou, J., Yuan, S., Zhao, Y., Li, Y., Zhang, R. & Van der Bruggen, B. (2019). MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. Journal of Materials Chemistry A, 7(27), 16313-16322.
[38] Xu, M., Feng, X., Han, X., Zhu, J., Wang, J., Van der Bruggen, B., & Zhang, Y. (2021). MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Separation and Purification Technology, 275, 119150.
[39] Li, Y., Wong, E., Mai, Z., & Van der Bruggen, B. (2019). Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. Journal of Membrane Science, 592, 117396.
[40] Li, Y., Li, J., Soria, R. B., Volodine, A., & Van der Bruggen, B. (2020). Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration. Journal of Membrane Science, 603, 118002.
[41] Abdi, S., Nasiri, M., Yuan, S., Zhu, J., & Van der Bruggen, B. (2020). Fabrication of PES-based super-hydrophilic ultrafiltration membranes by combining hydrous ferric oxide particles and UV irradiation. Separation and Purification Technology, 118132.
[42] Gadelmawla, E. S., Koura, M. M., Maksoud, T. M., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133-145.
[43] Gao, X., Li, P., Gu, Z., Xiao, Q., Yu, S., & Hou, L. A. (2021). Preparation of poly (piperazine-amide) nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization: Performance and mechanism. Journal of Membrane Science, 638, 119711.
[44] Karimi, H., Rahimpour, A., & Shirzad Kebria, M. R. (2016). Pesticides removal from water using modified piperazine-based nanofiltration (NF) membranes. Desalination and Water Treatment, 57(52), 24844-24854.
[45] Zhang, K., Yang, K., Chen, Y., & Hu, Y. (2020). Ionic and pH responsive thin film composite hollow fiber nanofiltration membrane for molecular separation. Desalination, 496, 114709.
[46] Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Mohammad, A. W., Mohamed Zuki, F., & Jamari, N. L. A. (2022). Rejection mechanism of ionic solute removal by nanofiltration membranes: An overview. Nanomaterials, 12(3), 437.
[47] Van der Bruggen, B., Koninckx, A., & Vandecasteele, C. (2004). Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water research, 38(5), 1347-1353.
[48] Tansel, B. (2012). Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and Purification Technology, 86, 119-126.
[49] Nodeh, M. K. M., Kanani, N., Abadi, E. B., Sereshti, H., Barghi, A., & Rezania, S. (2021). Equilibrium and kinetics studies of naproxen adsorption onto novel magnetic graphene oxide functionalized with hybrid glycidoxy-amino propyl silane. Environmental Challenges, 4, 100106.
[50] Röhricht, M., Krisam, J., Weise, U., Kraus, U. R., & Düring, R. A. (2009). Elimination of carbamazepine, diclofenac and naproxen from treated wastewater by nanofiltration. CLEAN–Soil, Air, Water, 37(8), 638-641.
[51] Abtahi, S. M., Marbelia, L., Gebreyohannes, A. Y., Ahmadiannamini, P., Joannis-Cassan, C., Albasi, C. & Vankelecom, I. F. (2019). Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater. Separation and Purification Technology, 209, 470-481.
[52] Chon, K., KyongShon, H., & Cho, J. (2012). Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants. Bioresource Technology, 122, 181-188.
[53] Banjerdteerakul, K., Peng, H., & Li, K. (2023). COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues. Journal of Membrane Science, 681, 121780.
[54] Li, R., Mai, Z., Peng, D., Xu, S., Wang, J., Zhu, J., & Zhang, Y. (2022). In situ formation of porous organic polymer-based thin polyester membranes for loose nanofiltration. Journal of Membrane Science, 644, 120074.
[55] Yao, L., Qin, Z., Chen, Q., Zhao, M., Zhao, H., Ahmad, W. & Zhao, L. (2018). Insights into the nanofiltration separation mechanism of monosaccharides by molecular dynamics simulation. Separation and Purification Technology, 205, 48-57.
[56] Yuan, S., Zhang, G., Zhu, J., Mamrol, N., Liu, S., Mai, Z. & Van der Bruggen, B. (2020). Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes. Journal of Materials Chemistry A, 8(6), 3238-3245.