[1] Chng, J. Y., & Sholl, D. S. (2025). Kinetic separation of siloxanes in metal–organic frameworks. The Journal of Physical Chemistry C, 129(1), 910–917.
[2] Vinayagam, V., Palani, K. N., Ganesh, S., Rajesh, S., Akula, V. V., Avoodaiappan, R., Kushwaha, O. S., & Pugazhendhi, A. (2024). Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. Environmental Research, 240(Part 2), 117500.
[3] Liu, Y., Zhang, B., Yan, D., & Xiang, X. (2024). Recent advances in the selective oxidation of glycerol to value-added chemicals via photocatalysis/photoelectrocatalysis. Green Chemistry, 26, 2505–2524.
[4] Blackball, J. (2004). Modern oxidation method. Wiley-VCH.
[5] Akhavan, P. F. (2005). (Master’s thesis). Institute for Advanced Studies in Basic Sciences.
[6] Mizuno, N. (2009). Modern heterogeneous oxidation catalysis. Wiley-VCH.
[7] R. Farsani, M., Yadollahi, B., Taghiyar, H., Moghadam, AJ,
Mo132-Ionic Liquid As An Effective Hybrid Catalyst For Selective Epoxidation of Different Alkenes with H2O2,
Catalysis Letters 155 (2), 70.
[8] Aghayi, M., Yadollahi, B., & Farsani, M. R. (2020). Zinc substituted Keggin-type polyoxometalate on Dowex: a green heterogeneous catalyst for oxidation of alcohols in water. Journal of the Iranian Chemical Society, 17, 2895–2900.
[9] Wang, Y., Xu, N., Zhang, Y., Zhang, T., Zhang, Z., Li, X.-H., & Wang, X.-L. (2022). A Keggin-type polyoxometalate-based metal–organic complex as a highly efficient heterogeneous catalyst for the selective oxidation of alkylbenzenes. Dalton Transactions, 51, 2331–2337.
[10] Alizadeh, M., & Yadollahi, B. (2023). Synthesis of nanoscale surfactant-encapsulated silica-supported polyoxometalate [Si/AlO₂]@[PWZn]@CTAB and its catalytic application in the oxidation of alcohols. RSC Advances, 15(11), 8777–8783.
[11] Yekke-Ghasemi, Z., Heravi, M. M., Malmir, M., et al. (2023). Efficient oxidation of sulfides to sulfoxides catalyzed by heterogeneous Zr-containing polyoxometalate grafted on graphene oxide. Scientific Reports, 13, 16752.
[12] Malmir, M., Heravi, M. M., Yekke-Ghasemi, Z., et al. (2022). Incorporating heterogeneous lacunary Keggin anions as efficient catalysts for solvent-free cyanosilylation of aldehydes and ketones. Scientific Reports, 12, 11573.
[13] Yekke-Ghasemi, Z., Heravi, M. M., Malmir, M., Jahani, G., Bagheri Bisafar, M., & Mirzaei, M. (2022). Fabrication of heterogeneous-based lacunary polyoxometalates as efficient catalysts for the multicomponent and clean synthesis of pyrazolopyranopyrimidines. Inorganic Chemistry Communications, 140, 109456.
[14] Daraie, M., Mirzaei, M., Bazargan, M., Amiri, V. S., Abdolahi Sanati, B., & Heravi, M. M. (2022). Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Scientific Reports, 12, 12004.
[15] Heravi, M. M., Hosseinnejad, T., Tamimi, M., Zadsirjan, V., & Mirzaei, M. (2020). Tungstoboric acid (H₅BW₁₂O₄₀) as an efficient Lewis acid catalyst for the synthesis of chromenopyrimidine-2,5-diones and thioxochromenopyrimidin-5-ones: Joint experimental and computational study. Journal of Molecular Structure, 1205, 127598.
[16] Hosseinzadeh-Baghan, S., Mirzaei, M., Eshtiagh-Hosseini, H., Zadsirjan, V., Heravi, M. M., & Mague, J. T. (2020). An inorganic–organic hybrid material based on a Keggin-type polyoxometalate@Dysprosium as an effective and green catalyst in the synthesis of 2-amino-4H-chromenes via multicomponent reactions. Applied Organometallic Chemistry, 34(9).
[17] Samaniyan, M., Mirzaei, M., Khajavian, R., Eshtiagh-Hosseini, H., & Streb, C. (2019). Heterogeneous catalysis by polyoxometalates in metal–organic frameworks. ACS Catalysis, 9(11), 10174–10191.
[18] Derakhshanrad, S., Mirzaei, M., Streb, C., Amiri, A., & Ritchie, C. (2021). Polyoxometalate-based frameworks as adsorbents for drug of abuse extraction from hair samples. Inorganic Chemistry, 60(3), 1472–1479.
[19] Mirzaei, M., Eshtiagh-Hosseini, H., Alipour, M., Bauzá, A., Mague, J. T., Korabik, M., & Frontera, A. (2015). Hydrothermal synthesis, X-ray structure and DFT and magnetic studies of a (H₂SiW₁₂O₄₀)²⁻ based one-dimensional linear coordination polymer. Dalton Transactions, 44, 8824–8832.
[20] Taleghani, S., Mirzaei, M., Eshtiagh-Hosseini, H., & Frontera, A. (2016). Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalates: A crystal engineering perspective. Coordination Chemistry Reviews, 309, 84–106.
[21] Glass, E. N., Fielden, J., Huang, Z., Xiang, X., Musaev, D. G., Lian, T., and Hill, C. L., (2016). Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer,
Inorganic Chemistry, 55(9), 4308–4319
0
[22] Patel, A., Narkhede, N., Singh, S., and Pathan, S., (2016) Keggin-type lacunary and transition metal substituted polyoxometalates as heterogeneous catalysts: A recent progress, Catalysis Reviews, 58(3), 337–370.
[23] Guo, Y., Hu, C., Jiang, C., Yang, Y., Jiang, S., Li, X., and Wang, E., (2003). Preparation and heterogeneous photocatalytic behaviors of the surface-modified porous silica materials impregnated with monosubstituted keggin units, Journal of Catalysis, 217, 141–151 (2003).
[24] Peng, G., Wang, Y., Hu, C., Wang, E., Feng, S., Zhou, Y., Ding, H., and Liu, Y., (2001). Heteropolyoxometalates which are included in microporous silica, CsxH3-xPMo12O40/SiO2 and CsyH5-yPMo10V2O40/SiO2, as insoluble solid bifunctional catalysts: synthesis and selective oxidation of benzyl alcohol in liquid–solid systems, Applied Catalysis A: General, 218, 91–99.
[25] Kozhevnikov, I. V. (1998). Catalysis by polyoxometalates. Chemical Reviews, 98, 171–198.
[26] Ward, D. A., & Ko, E. I. (1995). Preparing catalytic materials by the sol-gel method. Industrial & Engineering Chemistry Research, 34(2), 421–433.
[27] Elali, B., Brtgeault, J. M., Mercier, J., Martin, J., Martin, C., & Convert, O. (1989). The oxidation of ketones with a heteropolyacid, H5[PMo10V2O40] and dioxygen. Journal of the Chemical Society, Chemical Communications, 825.
[28] Panchenko, V. N., Borbth, L., Timofeeva, M. N., & Gobël, S. (2010). Amine-modified silica NH2–(CH2)x–SiO2 (x = 0, 2, 3) as support for cobalt-substituted polyoxometalate TBA4HPW11CoO39: Effect of the nature of the support on the oxidation activity. Molecular Catalysis A, 319, 119.
[29] Danafar, H., Yadollahi, B. (2009). (TBA)4PFeW11O39·3H2O catalyzed efficient and facile ring opening reaction of epoxides with aromatic amines. Catalysis Communications, 10, 842–847.
[30] Guo, Y., Wang, Y., Hu, C., Wang, Y., & Wang, E. (2000). Microporous polyoxometalates POMs/SiO₂: Synthesis and photocatalytic degradation of aqueous organochlorine pesticides. Chemistry of Materials, 12, 3501–3508.
[31] Assady, E., Yadollahi, B., Farsani, M. R., & Moghadam, M. (2015). Zinc polyoxometalate on activated carbon: an efficient catalyst for selective oxidation of alcohols with hydrogen peroxide. Applied Organometallic Chemistry, 29, 561.
[32] Farsani, M. R., Yadollahi, B. (2014). Synthesis, characterization and catalytic performance of a Fe polyoxometalate/silica composite in the oxidation of alcohols with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 392, 8–15.