[1] Fox, M.A., & Dulay, M.T. (1993). Heterogeneous photocatalysis. Chem. Rev, 93, 341-357.
[2] Ben Hariz, S.H., Lahmar, H., Rekhila, G., Bouhala, A., Trari, M., & Benamira, M. (2022). A novel MgCr2O4/WO3 hetero-junction photocatalyst for solar photo reduction of hexavalent chromium cr (VI). J. Photochem. Photobiol. A Chem, 430, 113986.
[3] Laouici, R., Douafer, S., Lahmar, H., Rekhila, G., Trari, M., & Benamira, M. (2021). Elaboration and studies of physical and photo-electrochemical properties of La2NiO4 and its use with SnO2 in photo-evolution of hydrogen under visible light irradiation. Optik (stuttg), 236.
[4] Lahmar, H., Benamira, M., Douafer, S., Messaadia, L., Boudjerda, A., & Trari, M. (2020). Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ ZnO under solar light. Chem. Phys. Lett, 742,137132.
[5] Gherbi, R., Nasrallah, N., Amrane, A., Maachi, R., & Trari, M. (2011). Photocatalytic reduction of cr (VI) on the new hetero-system CuAl2O4/TiO2. J. Hazard. Mater, 186 ,1124-1130.
[6] Cong, Z., Zhou, L., Zheng, N., & Sesay, T. (2023). Synthesis and visible-light photocatalytic property of spinel CuAl2O4 for vehicle emissions. Environ. Sci. Pollut. Res, 30, 64123-64136.
[7] Ponmudi, S., Sivakumar, R., Sanjeeviraja, C., Gopalakrishnan, C., & Jeyadheepan, K. (2019). Facile fabrication of spinel structured n-type CuAl2O4 thin film with nano-grass like morphology by sputtering technique. Appl. Surf. Sci, 483, 601-615.
[8] Kaci, M.M., Nasrallah, N., Djaballah, A.M., Akkari, I., Belabed, C., Soukeur, A., Atmani, F., & Trari, M. (2022). Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure. Opt. Mater. (amst), 126, 112198.
[9] Kiamouche, S., Messaadia, L., Lahmar, H., Rekhila, G., & Trari, M. (2022). Enhanced photocatalytic degradation of ponceau S red dye on the novel hetero-system Fe2O3/WO3 under solar light irradiation React. Kinet. Mech. Catal., 1-16.
[10] Lourghi, M., Lahmar, H., Rekhila, G., Bouatam, I., Trari, M., & Benamira, M. (2024). Fabrication of the new p-Co3O4/n-AgI hetero-junction and its solar photo-degradation of the fast green FCF, J. Photochem. A Chem., 447, 115195.
[11] Li, Da., Huang, Linlin. Liu, Tongtong., Jia, Liu., & Feng, Yujie. (2019). Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres. Chemos, 23, 124527.
[12] Sughra Jamila, G., Sajjad, S., Ahmed Khan Leghari, S., & Mahmood, T., (2020). Role of nitrogen doped carbon quantum dots on CuO nano-leaves as solar induced photo catalyst. J. Phys. Chem. Solid, 138, 109233.
[13] Gazi, M., Panda, S., & Bordoloi, A., (2024). Synthesis of surface-engineered SrFe2O4 for efficient catalytic partial oxidation of methane. Sustainable Chemistry for Climate Action, 5, 100045.
[14] S, H., Jayakumar, O. D., & Sambhudevan, S., (2024). Temperature-controlled morphology and enhanced functionalities of hydrothermally synthesized SrFe2O4 nanostructures for multifaceted applications, 48, 104252.
[15] Eltaweil, S.A., Mohamed, H., & El-Subruiti, M., (2024). Designing of SrFe2O4-decorated sulfur-MXene for super-fast adsorption of mercury. Journal of Molecular Liquids, 408, 125275.
[16] Karim, S., Chakraborty, A., & Das, D., (2022). Devising SrFe2O4 spinel nanoflowers as highly efficient catalyst for enhanced electrochemical water oxidation in different basic concentration. Journal of Electroanalytical Chemistry, 919, 116465.
[17] Zhang, D., & Zhang, L., (2016). Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst. Journal of the Taiwan Institute of Chemical Engineers. 69, 156-162.
[18] Bo, L., Hu, Y., & Tong, J., (2019). Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g=C3N4 composite under visible light. Polyhedron, 168, 94-100.
[19] Douafer, S., Lahmar, H., Laouici, R., Akika, F.Z., Trari, M., Avramova, I., & Benamira, M. (2023). Synthesis and characterization of CdFe2O4 nanoparticles: application for the removal of methyl green under solar irradiation, Mater. Today Commun. 105630.
[20] Boulahbel, H., Benamira, M., Bouremmad, F., Nada, A., Kiamouche, S., Lahmar,H., Souici, A., & Trari, M. (2023). Enhanced photodegradation of Congo red dye under sunlight irradiation by pn NiFe2O4/TiO2 heterostructure. Inorg. Chem. Commun, 110921.
[21] Ahmia, N., Benamira, M., Messaadia, L., Colmont, M., Boulahbel, H., Lahmar, H., Souici, A., & Trari, M. (2024). Photocatalytic activity of ZnMn2O4/TiO2 heterostructure under solar light irradiation: Experimental and theoretical study. J. Mol. Struct, 1306, 137834.
[22] Cai, Yuan., Yang, Fuxing., Wu, Lili., Shu, Yuxian., Qu, Guangmiao., Fakhri, Ali., & Kumar Gupta, Vinod.(2021). Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Materials Chemistry and Physics, 258, 123919.
[23] Boughelout, A., Macaluso, R., Kechouane, M., & Trari, M. (2020). Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films. React. Kinet.Mech.Catal, 129, 1115-1130.
[24] Boumaza, S., Kaouah, F., Hamane, D., Trari, M., Omeiri, S., Bendjama, Z. (2014). Visible light assisted decolorization of azo dyes: direct red 16 and direct blue 71 in aqueous solution on the p-CuFeO2/n-ZnO system. J. Mol. Catal. A Chem. 393, 156–165.
[25] Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. Sol. Energy, 76, 577-589.
[26] Almorox, J., Voyant, C., Bailek, N., Kuriqi, A., & Arnaldo, J.A. (2021). Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: an empirical-based review. Energy, 236, 121486.
[27] Nicolet, M. (1989). Solar spectral irradiances with their diversity between 120 and 900 nm, Planet. Space Sci. 37, 1249-1289.
[28] Gueymard, C.A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy. 76, 423–453.
[29] Myrick, M.L., Simcock, M.N., Baranowski, M., Brooke, H., Morgan, S.L., & McCutcheon, J. N. (2011). The kubelka-munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 46, 140-165.
[30] Gelderman, K., Lee, L., & Donne, S.W. (2007). Flat-band potential of a semiconductor: using the Mott-schottky equation. J. Chem. Educ. 84, 685.
[31] Xie, J. X., Bakker, E., (2015). Solvatochromic dyes as pH-independent indicators for ionophore nanosphere-based complexometric titrations. Anal. Chem. 87, 12318-12323.
[32] Akika, F.Z., Benamira, M., Lahmar, H., Trari, M., Avramova, I., & Suzer, S, (2020). Structural and optical properties of cu-doped ZnAl2O4 and its application as photocatalyst for Cr (VI) reduction under sunlight. Surfaces and Interfaces, 18, 100406.
[33] Turchi, C.S., & Ollis, D.F, (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192.
[34] Lahmar, H., Douafer, S., Laouici, R., Hamdi, M., Souici, A., Trari, M, & Benamira, M.(2024). Synthesis and characterization of CuAl2O4 nanoparticles: Application for the removal of Eriochrome Black T under solar light irradiation. Inorganic Chemistry Communications, 163,112316
[35] Kazeminezhad, Iraj., & Sadollahkhani, Azar. (2014). Photocatalytic degradation of Eriochrome black-Tdye using ZnO nanoparticles. Materials Letters, 120, 267-270.
[36] Nosaka,Y.,& Nosaka. A. (2016). Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett. 1, 356–359.
[37] Barker, D.J., Mannucchi, G.A., Salvi, S.M.L. & Stuckey, D.C. (1999). Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Res, 33, 2499-2510.
[38] Renathung C, Ngullie., Saleh O, Alaswad., Kandasamy Bhuvaneswari., Paramasivam Shanmugam., Thangavelu Pazhanivel., & Prabhakarn Arunachalam. (2020). Synthesis and Characterization of Efficient ZnO/g-C3N4 Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue. Coatings, 10(5), 500.
[39] Vijayakumar, T.P., Benoy, M.D., Duraimurugan, J., Suresh Kumar, G., Mohd. Shkir., Maadeswaran, P., Senthil Kumar, A., & Ramesh Kumar, K.A. (2022). Hydrothermal synthesis of CuO/g-C3N4 nanosheets for visible-light driven photodegradation of methylene blue. Diamond and Related Materials, 121, 108735.
[40] Golmohammadi, M., Nabipoor Hassankiadeh, M., & Zhang, L. (2021). Facile biosynthesis of SnO2/ZnO nanocomposite using Acroptilon repens flower extract and evaluation of their photocatalytic activity. Ceramics International, 47, 29303-29308.
[41] Mihieka Asai, M., & Tapadia, K. (2025). Biofabricated magnetic CuO@Fe3O4 nanocomposites: Synthesis, characterization and Brilliant Green dye removal from aqueous media and its kinetics study. Journal of the Indian Chemical Society, 102 (5) , 101668.