[1] Gopakumar, D. A., Baby, A., Mathew, A., Pai, A. R., Basheer, J., Seantier, B., & George, J. J. (2024). Functional Melamine-Formaldehyde Cross-linked Cellulose Nanofiber Based Aerogels with Excellent Flame Retardancy for Thermal-Acoustic Insulation Applications. Journal of Polymers and the Environment, 1-15.
[2] Wang, H., Wang, H., Xiong, J., Huang, S., & Koutrakis, P. (2022). A rapid and robust method to determine the key parameters of formaldehyde emissions from building and vehicle cabin materials: principle, multi-source application and exposure assessment. Journal of Hazardous Materials, 430, 128422.
[3] Tian, M., Xia, P., Yan, L., Gou, X., Giesy, J. P., Dai, J., & Zhang, X. (2022). Toxicological mechanism of individual susceptibility to formaldehyde-induced respiratory effects. Environmental Science & Technology, 56(10), 6511-6524.
[4] Bernardini, L., Barbosa, E., Charão, M. F., & Brucker, N. (2022). Formaldehyde toxicity reports from in vitro and in vivo studies: a review and updated data. Drug and chemical toxicology, 45(3), 972-984.
[5] Kangarlou, M. B., Fatemi, F., Dehdashti, A., Iravani, H., & Saleh, E. (2023). Occupational health risk assessment of airborne formaldehyde in medical laboratories. Environmental Science and Pollution Research, 30(17), 50392-50401.
[6] Barek, J., Fogg, A. G., Muck, A., and Zima, J. (2001). Polarography and voltammetry at mercury electrodes. Critical reviews in analytical chemistry, 31, 291-309.
[7] Jiang, Y., Liu, Y., Chen, M., and Li, M. (2017). Assessment of formaldehyde pollution based on Weber exponent and perception of people’s smell. International Journal of Environmental Science and Technology, 14, 1469-1472.
[8] Kalanjati, V. P., Prasetiowati, L., and Alimsardjono, H. (2012). The use of lower formalincontaining embalming solution for anatomy cadaver preparation. Medical Journal of Indonesia, 21, 203-208.
[9] Kamyabi, M., and Niazi, S. (2014). Electrochemical detection of trace insulin at polyCo (Phen) 3/CarbonNanotubemodified Electrodes. Analytica Chimica Acta, 12, 205-2010.
[10] Du, H., Zhang, H., Fan, Y., Zheng, Y., Yuan, S., Jia, T. T., ... & Ye, Y. (2023). A novel fluorescent probe for the detection of formaldehyde in real food samples, animal serum samples and gaseous formaldehyde. Food Chemistry, 411, 135483.
[11] Zheng, J. J., Liu, W. C., Lu, F. N., Tang, Y., & Yuan, Z. Q. (2022). Recent progress in fluorescent formaldehyde detection using small molecule probes. Journal of Analysis and Testing, 6(2), 204-215.
[12] Kansara, V., Shukla, R., Flora, S. J. S., Bahadur, P., & Tiwari, S. (2022). Graphene quantum dots: Synthesis, optical properties and navigational applications against cancer. Materials Today Communications, 31, 103359.
[13] Li, G., Liu, Z., Gao, W., & Tang, B. (2023). Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications. Coordination Chemistry Reviews, 478, 214966.
[14] Madhi, A., Shirkavand Hadavand, B., Madhi, M. H., & Rahmani, Z. (2024). Fluorescent UV-curable Polyurethane Acrylate Nanocomposite Coatings Strengthened with Carbon Quantum Dots: Preparation and Investigation of UV-blocking and Anti-Corrosive Properties. Applied Chemistry Today, 19.73, 41-54.
[15] Madhi, A., & Shirkavand Hadavand, B. (2022). Chemical treatment of cotton fabric by eco-friendly carbon quantum dots-chitosan nanocomposites. Applied Chemistry Today, 17.63, 55-66.
[16] Chaghaghazardi, M., Kashanian, S., Nazari, M., Omidfar, K., Joseph, Y., & Rahimi, P. (2023). Nitrogen and sulfur co-doped carbon quantum dots fluorescence quenching assay for detection of mercury (II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 293, 122448.
[17] Dan, Qu, et al. (2013). Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 5.24, 12272-12277.
[18] Xie, H., Hou, C., Wang, H., Zhang, Q., & Li, Y. (2017). S, N co-doped graphene quantum dot/TiO2 composites for efficient photocatalytic hydrogen generation. Nanoscale research letters, 12, 1-8.
[19] Pham, T. N., Trinh, T. H., Nguyen, T. M. H., Phan, X. T., & Le Xuan, H. (2024). Optical Properties of S-doped and S, N Co-doped Graphene Quantum Dots and Application. VNU Journal of Science: Natural Sciences and Technology, 40(4).
[20] Zhang, H., Wang, J., Ji, X., Bao, Y., Han, C., & Sun, G. (2024). Nitrogen and Sulfur Co-Doped Graphene-Quantum-Dot-Based Fluorescent Sensor for Rapid Visual Detection of Water Content in Organic Solvents. Molecules, 29(21), 5178.
[21] Mohammad‐Rezaei, R., Razmi, H., & Abdolmohammad‐Zadeh, H. (2013). d‐penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper (II). Luminescence, 28(4), 503-509.
[22] Madhi, A. H., & Madhi, A. (2023). Strengthening Effect of Graphene Quantum Dots as UV Blocker for Wood-polyester Nanocomposite Coating. Organic Chemistry Research, 9(1), 44-49.
[23] Madhi, A., & Shirkavand Hadavand, B. (2025). Yellow fluorescent UV-curable epoxy acrylate/VTMS-modified GQDs coatings: study of UV-blocking and viscoelastic properties. Fullerenes, Nanotubes and Carbon Nanostructures, 1-11.
[24] Madhi, A., Shirkavand Hadavand, B., & Madhi, A. H. (2024). Bio-friendly fluorescent polyvinyl alcohol/gelatin/chitosan hydrogel membranes strengthened by g-C3N4/CQDs nanocomposite: Preparation, investigation of UV-absorption, mechanical and rheological properties. Fullerenes, Nanotubes and Carbon Nanostructures, 32(6), 611-620.
[25] Yi, Q., Niu, F., &Yu, W. (2011). Pd modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films, 519, 3155-3161.
[26] Qiaoet, J. and et al. (2013). Synthesis of a palladiumgraphene material and its application for formaldehyde determination. Analytical Letters, 46, 1454-1465.
[27] Wang, Q., Zheng, J., & Zhang, H. (2012). A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquidchitosan composite film. Journal of Electroanalytical Chemistry, 674, 1-6.
[28] Azizi, S. N., Ghasemi, S., & Amiripour, F. (2016). Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sensors and Actuators B: Chemical, 227, 1-10.
[29] Jingzhou, Hou, et al. (2023). Efficient detection of formaldehyde by fluorescence switching sensor based on GSH-CdTe. Microchemical Journal, 190, 108647.