[1] Su, X., Li, X., Li, J., Liu, M., Lei, F., Tan, X., Luo, W. (2015). Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Rhodamine B in food. Food chemistry, 171, 292-297.
[2] Sun, X., He, X., Zhang, Y., & Chen, L. (2009). Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography. Talanta, 79(3), 926-934.
[3] Vasapollo, G., Sole, R. D., Mergola, L., Lazzoi, M. R., Scardino, A., Scorrano, S., & Mele, G. (2011). Molecularly imprinted polymers: present and future prospective. International journal of molecular sciences, 12(9), 5908-5945.
[4] Ye, L., & Mosbach, K. (2008). Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chemistry of Materials, 20(3), 859-868.
[5] Javidi, J., Esmaeilpour, M., & Khansari, M. R. (2015). Synthesis, characterization and application of core–shell magnetic molecularly imprinted polymers for selective recognition of clozapine from human serum. Rsc Advances, 5(89), 73268-73278.
[6] Ostovan, A., Arabi, M., Wang, Y., Li, J., Li, B., Wang, X., & Chen, L. (2022). Greenificated molecularly imprinted materials for advanced applications. Advanced Materials, 34(42), 2203154.
[7] Mirata, F., & Resmini, M. (2015). Molecularly imprinted polymers for catalysis and synthesis. Molecularly imprinted polymers in biotechnology, 107-129.
[8] Lowdon, J. W., Diliën, H., Singla, P., Peeters, M., Cleij, T. J., van Grinsven, B., & Eersels, K. (2020). MIPs for commercial application in low-cost sensors and assays–An overview of the current status quo. Sensors and Actuators B: Chemical, 325, 128973.
[9] Basak, S., Venkatram, R., & Singhal, R. S. (2022). Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control, 139, 109074.
[10] Mpupa, A., Selahle, S. K., Mizaikoff, B., & Nomngongo, P. N. (2021). Recent advances in solid-phase extraction (SPE) based on molecularly imprinted polymers (MIPs) for analysis of hormones. Chemosensors, 9(7), 151.
[11] Liu, Q., Wan, J., & Cao, X. (2018). Synthesis of core-shell molecularly imprinted polymers (MIP) for spiramycin I and their application in MIP chromatography. Process biochemistry, 70, 168-178.
[12] Rebelo, P., Costa-Rama, E., Seguro, I., Pacheco, J. G., Nouws, H. P., Cordeiro, M. N. D., & Delerue-Matos, C. (2021). Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosensors and Bioelectronics, 172, 112719.
[13] Radi, A.-E., Wahdan, T., & El-Basiony, A. (2019). Electrochemical sensors based on molecularly imprinted polymers for pharmaceuticals analysis. Current Analytical Chemistry, 15(3), 219-239.
[14] Liu, R., & Poma, A. (2021). Advances in molecularly imprinted polymers as drug delivery systems. Molecules, 26(12), 3589.
[15] Zu, B., Zhang, Y., Guo, X., & Zhang, H. (2010). Preparation of molecularly imprinted polymers via atom transfer radical “bulk” polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48(3), 532-541.
[16] Pardeshi, S., & Singh, S. K. (2016). Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. Rsc Advances, 6(28), 23525-23536.
[17] mut, E., Fu, Q., Fang, Q., Liu, R., Xiao, A., Zeng, A., & Chang, C. (2010). In situ polymerization preparation of chiral molecular imprinting polymers monolithic column for amlodipine and its recognition properties study. Journal of polymer research, 17, 401-409.
[18] Pan, G., Zhang, Y., Guo, X., Li, C., & Zhang, H. (2010). An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosensors and Bioelectronics, 26(3), 976-982.
[19] Kong, X., Gao, R., He, X., Chen, L., & Zhang, Y. (2012). Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@ MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. Journal of Chromatography A, 1245, 8-16.
[20] Li, H., Xu, W., Wang, N., Ma, X., Niu, D., Jiang, B., . . . Zhou, Z. (2012). Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchimica Acta, 179, 123-130.
[21] Büyüktiryaki, S., Ersöz, A., & Say, R. (2024). Green magnetic core–shell MIPs for environmental applications. In Green Imprinted Materials (pp. 269-329): Elsevier.
[22] Wu, Q., Li, M., Huang, Z., Shao, Y., Bai, L., & Zhou, L. (2018). Well-defined nanostructured core–shell magnetic surface imprinted polymers (Fe3O4@ SiO2@ MIPs) for effective extraction of trace tetrabromobisphenol A from water. Journal of Industrial and Engineering Chemistry, 60, 268-278.
[23] Dindarloo Inaloo, I., Majnooni, S., Eslahi, H., & Esmaeilpour, M. (2020). Nickel (II) nanoparticles immobilized on EDTA-modified Fe3O4@ SiO2 nanospheres as efficient and recyclable catalysts for ligand-free Suzuki–Miyaura coupling of aryl carbamates and sulfamates. ACS omega, 5(13), 7406-7417.
[24] Dindarloo Inaloo, I., Esmaeilpour, M., Majnooni, S., & Reza Oveisi, A. (2020). Nickel‐Catalyzed Synthesis of N‐(Hetero) Aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride. ChemCatChem, 12(21), 5486-5491.
[25] Kazemnejadi, M., Alavi, S. A., Rezazadeh, Z., Nasseri, M. A., Allahresani, A., & Esmaeilpour, M. (2019). Fe3O4@ SiO2@ Im [Cl] Mn (III)-complex as a highly efficient magnetically recoverable nanocatalyst for selective oxidation of alcohol to imine and oxime. Journal of Molecular Structure, 1186, 230-249.
[26] Abu-Reziq, R., Alper, H., Wang, D., & Post, M. L. (2006). Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. Journal of the American Chemical Society, 128(15), 5279-5282.
[27] Sardarian, A. R., Eslahi, H., & Esmaeilpour, M. (2019). Green, cost‐effective and efficient procedure for Heck and Sonogashira coupling reactions using palladium nanoparticles supported on functionalized Fe3O4@ SiO2 by polyvinyl alcohol as a highly active, durable and reusable catalyst. Applied Organometallic Chemistry, 33(7), e4856.
[28] Inaloo, I. D., Majnooni, S., Eslahi, H., & Esmaeilpour, M. (2020). N-Arylation of (hetero) arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel (0) catalyst. New Journal of Chemistry, 44(31), 13266-13278.
[29] Ke, F., Qiu, L.-G., & Zhu, J. (2014). Fe 3 O 4@ MOF core–shell magnetic microspheres as excellent catalysts for the Claisen–Schmidt condensation reaction. Nanoscale, 6(3), 1596-1601.
[30] Zhou, L., Gao, C., & Xu, W. (2010). Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir, 26(13), 11217-11225.
[31] Esmaeilpour, M., Javidi, J., & Dehghani, F. (2016). Preparation, characterization and catalytic activity of dendrimer-encapsulated phosphotungstic acid nanoparticles immobilized on nanosilica for the synthesis of 2 H-indazolo [2, 1-b] phthalazine-triones under solvent-free or sonochemical conditions. Journal of the Iranian Chemical Society, 13, 695-714.
[32] Li, W., Zhang, B., Li, X., Zhang, H., & Zhang, Q. (2013). Preparation and characterization of novel immobilized Fe3O4@ SiO2@ mSiO2–Pd (0) catalyst with large pore-size mesoporous for Suzuki coupling reaction. Applied Catalysis A: General, 459, 65-72.
[33] Liu, Z., Lei, M., Zeng, W., Li, Y., Li, B., Liu, D., & Liu, C. (2023). Synthesis of magnetic Fe3O4@ SiO2-(-NH2/-COOH) nanoparticles and their application for the removal of heavy metals from wastewater. Ceramics International, 49(12), 20470-20479.
[34] Najafi, P., Zabihi, M., & Faghihi, M. (2024). Remarkable adsorption of anionic dye on the supported magnetic and non-magnetic polymeric nanocomposites including chitosan/polyacrylamide and chitosan/polylactic acid. Water, Air, & Soil Pollution, 235(6), 366.
[35] Malekzadeh, H., Zabihi, M., & Faghihi, M. (2025). Innovative supported bimetallic and trimetallic nanocomposites on the anodized aluminum (Fe-Mn@ AAO and Fe-Mn-Cu@ AAO) as competent adsorbents for the adsorption of arsenic from aqueous solutions. Journal of Molecular Liquids, 127461.
[36] Banerjee, S. S., & Chen, D.-H. (2007). Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. Journal of hazardous materials, 147(3), 792-799.
[37] Karami, H. (2013). Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal, 219, 209-216.
[38] Wang, J., Ma, X., Fang, G., Pan, M., Ye, X., & Wang, S. (2011). Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions. Journal of hazardous materials, 186(2-3), 1985-1992.
[39] Kołodyńska, D., Kowalczyk, M., & Hubicki, Z. (2014). Evaluation of iron-based hybrid materials for heavy metal ions removal. Journal of Materials Science, 49, 2483-2495.
[40] Phuengprasop, T., Sittiwong, J., & Unob, F. (2011). Removal of heavy metal ions by iron oxide coated sewage sludge. Journal of hazardous materials, 186(1), 502-507.
[41] Zhang, L., Yu, C., Zhao, W., Hua, Z., Chen, H., Li, L., & Shi, J. (2007). Preparation of multi-amine-grafted mesoporous silicas and their application to heavy metal ions adsorption. Journal of Non-Crystalline Solids, 353(44-46), 4055-4061.
[42] Yeung, P.-T., Chung, P.-Y., Tsang, H.-C., Tang, J. C.-O., Cheng, G. Y.-M., Gambari, R., . . . Lam, K.-H. (2014). Preparation and characterization of bio-safe activated charcoal derived from coffee waste residue and its application for removal of lead and copper ions. Rsc Advances, 4(73), 38839-38847.
[43] Lee, S.-M., Laldawngliana, C., & Tiwari, D. (2012). Iron oxide nano-particles-immobilized-sand material in the treatment of Cu (II), Cd (II) and Pb (II) contaminated waste waters. Chemical Engineering Journal, 195, 103-111.
[44] Bai, Q., Huang, C., Ma, S., Gong, B., & Ou, J. (2023). Rapid adsorption and detection of copper ions in water by dual-functional ion-imprinted polymers doping with carbon dots. Separation and Purification Technology, 315, 123666.
[45] Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20, 358-368.
[46] Mishra, S., & Singh, S. (2024). Effective removal of Cu (II) ions using graphene Oxide-Based surface imprinted polymeric Beads: Implications for water purification. Inorganic Chemistry Communications, 161, 112090.
[47] Anbouhi, R. K., Masnabadi, N., Ghasemi, M. H., & Beyki, M. H. (2024). Cu (II) tagged magnetic MgFe2O4: starch based surface imprinted polymer for selective copper targeting from aqueous media. Polymer Bulletin, 81(15), 13647-13668.
[48] Say, R., Birlik, E., Ersöz, A., Yılmaz, F., Gedikbey, T., & Denizli, A. (2003). Preconcentration of copper on ion-selective imprinted polymer microbeads. Analytica Chimica Acta, 480(2), 251-258.