[1] Pedersen, J.T.S., van Vuuren, D., Gupta, J., Santos, F.D., Edmonds, J., and Swart, R. (2022) IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022? Glob. Environ. Chang., 75 (2022), 102538.
[2] Dai, Z., and Deng, L. (2024) Membranes for CO2 capture and separation: Progress in research and development for industrial applications. Sep. Purif. Technol., 335 (2024), 126022.
[3] Comesaña-Gándara, B., Chen, J., Bezzu, C.G., Carta, M., Rose, I., Ferrari, M.C., Esposito, E., Fuoco, A., Jansen, J.C., and McKeown, N.B. (2019) Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci., 12 (9), 2733–2740.
[4] Kamble, A.R., Patel, C.M., and Murthy, Z.V.P. (2021) A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sustain. Energy Rev., 145, 111062.
[5] Shah Buddin, M.M.H., and Ahmad, A.L. (2021) A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. J. CO2 Util., 51 (June), 101616.
[6] He, S., Zhan, Y., Hu, J., Zhang, G., Zhao, S., Feng, Q., and Yang, W. (2020) Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Compos. Part B Eng., 197 (May), 108188.
[7] Yang, Q., Vaesen, S., Ragon, F., Wiersum, A.D., Wu, D., Lago, A., Devic, T., Martineau, C., Taulelle, F., Llewellyn, P.L., Jobic, H., Zhong, C., Serre, C., De Weireld, G., and Maurin, G. (2013) A Water Stable Metal-Organic Framework with Optimal Features for CO2 Capture . Angew. Chemie, 125 (39), 10506–10510.
[8] Malankowska, M., Coronas, J., Embaye, A.S., Martínez-Izquierdo, L., and Téllez, C. (2021) Poly(ether-block-amide) copolymer membranes in CO2 separation applications. Energy and Fuels, 35 (21), 17085–17102.
[9] Surya Murali, R., Sridhar, S., Sankarshana, T., and Ravikumar, Y.V.L. (2010) Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind. Eng. Chem. Res., 49 (14), 6530–6538.
[10] Bondi, A. (1964) Van der waals volumes and radii. J. Phys. Chem., 68 (3), 441–451.
[11] Yang, Y., and Xia, Y. (2019) Polycarboxyl metal–organic framework UiO-66-(COOH)2 as efficient desorption/ionization matrix of laser desorption/ionization mass spectrometry for selective enrichment and detection of phosphopeptides. J. Nanoparticle Res., 21 (11).
[12] Jiang, Y., Zhang, B., Zheng, Y., and Wu, Y. (2024) Highly permselective Pebax/MWCNTs mixed matrix membranes for CO2/N2 separation. Polym. Bull., 81 (11), 9699–9719.
[13] Gao, Y., Pan, Y., Zhou, Z., Tian, Q., and Jiang, R. (2022) The Carboxyl Functionalized UiO-66-(COOH)2 for Selective Adsorption of Sr2+. Molecules, 27 (4).
[14] Jiang, L., Chen, Y., and Hou, X. (2022) Preparation of a Poly (Ether-b-Amide) Mixed-Matrix Membrane and Its Application in Blast Furnace Gas. Coatings, 12 (12), 1851.
[15] Ghadimi, A., Amirilargani, M., Mohammadi, T., Kasiri, N., and Sadatnia, B. (2014) Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J. Memb. Sci., 458, 14–26.
[16] Dong, L., Chen, M., Li, J., Shi, D., Dong, W., Li, X., and Bai, Y. (2016) Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J. Memb. Sci., 520, 801–811.
[17] Sutrisna, P.D., Hou, J., Zulkifli, M.Y., Li, H., Zhang, Y., Liang, W., D’Alessandro, D.M., and Chen, V. (2018) Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. J. Mater. Chem. A, 6 (3), 918–931.
[18] Xu, L., Xiang, L., Wang, C., Yu, J., Zhang, L., and Pan, Y. (2017) Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chinese J. Chem. Eng., 25 (7), 882–891.
[19] Shi, F., Sun, J., Wang, J., Liu, M., Yan, Z., Zhu, B., Li, Y., and Cao, X. (2021) MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J. Memb. Sci., 620 (October), 118850.
[20] Kim, J.H., Ha, S.Y., and Lee, Y.M. (2001) Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J. Memb. Sci., 190 (2), 179–193.
[21] Liu, G., Cheng, L., Chen, G., Liang, F., Liu, G., and Jin, W. (2020) Pebax‐Based Membrane Filled with Two‐Dimensional Mxene Nanosheets for Efficient CO2 Capture. Chem. – An Asian J., 15 (15), 2364–2370.
[22] Zhu, W., Qin, Y., Wang, Z., Zhang, J., Guo, R., and Li, X. (2019) Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation. J. Energy Chem., 31, 1–10.
[23] Duan, K., Wang, J., Zhang, Y., and Liu, J. (2019) Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Memb. Sci., 572, 588–595.
[24] Moghadam, F., Omidkhah, M.R., Vasheghani-Farahani, E., Pedram, M.Z., and Dorosti, F. (2011) The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol., 77 (1), 128–136.
[25] Hou, W., Cheng, J., Liu, N., Yang, C., Chen, Y., Zhang, H., Ye, B., and Zhou, J. (2022) Selection-diffusion-selection mechanisms in ordered hierarchically-porous MOF-on-MOF: ZIF-8 @NH2-MIL-125 for efficient CO2 separation. J. Environ. Chem. Eng., 10 (3), 108029.
[26] Azizi, N., Isanejad, M., Mohammadi, T., and Behbahani, R.M. (2019) Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes. Front. Chem. Sci. Eng., 13 (3), 517–530.
[27] Wang, X., Zhang, Y., Chen, X., Wang, Y., He, M., Shan, Y., Li, Y., Zhang, F., Chen, X., and Kita, H. (2022) Preparation of Pebax 1657/MAF-7 Mixed Matrix Membranes with Enhanced CO2/N2 Separation by Active Site of Triazole Ligand. Membranes (Basel)., 12 (8).
[28] Isanejad, M., and Mohammadi, T. (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Mater. Chem. Phys., 205, 303–314.